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WSTEP

W latach dwudziestych ubieglego wieku Stefan Bergman (zob. liste publikacji w
[Ber 1950]) zainicjowal badania funkcji holomorficznych catkowalnych z kwadratem.
Wprowadzil réwniez, $cisle z nimi zwiazane, funkcje jadrowa oraz metryke, ktére poz-
niej zostaly nazwane jego imieniem. Motywacja byta proba rozwiazania problemu kla-
syfikacji obszaréw w C™, ktéry zrodzit sie pod koniec dziewigtnastego wieku i pozostaje
jednym z najwiekszych wyzwan wspoélczesnej analizy zespolonej wielu zmiennych. Po-
incaré pokazal mianowicie, ze — w przeciwienstwie do plaszczyzny zespolonej, gdzie
mamy twierdzenie Riemanna o odwzorowaniach konforemnych — juz kula jednostkowa
w C? nie jest biholomorficzna z bidyskiem. Jadro oraz metryka Bergmana, jako nie-
zmienniki biholomorfizmoéw, byly naturalnymi obiektami, ktore mogty decydowaé, czy
lub kiedy dwa obszary sa podobne w rozumieniu analizy zespolonej.

W naturalny sposéb pojawito sie takze pytanie o zupelno$é obszaréow wzgledem me-
tryki Bergmana oraz wyczerpywalnos$é (dazenie jadra Bergmana do nieskonczonosci
przy zblizaniu sie do brzegu). Bremermann ([Bre 1955]) udowodnil, ze kazdy obszar
wyczerpywalny lub zupelny w sensie Bergmana musi byé¢ pseudowypuktly. Przyktad
kota jednostkowego bez Srodka na plaszczyznie pokazuje, ze zadna z implikacji odwrot-
nych nie moze zachodzié.

Bezposrednie badanie obiektow wprowadzonych przez Bergmana oraz wtasnosci z
nimi zwigzanych (zupelnos¢) wiazato sie ze znacznymi trudnosciami technicznymi. Do-
piero kryterium Kobayashiego ([Kob 1959]) znacznie ulatwilo i przez dlugi czas bylo
niemal jedynym narzedziem wykorzystywanym do badania zupelnosci w sensie Berg-
mana. Kobayashi zapytal czy, podany przez niego, warunek wystarczajacy na zupetnosé
jest réwniez warunkiem koniecznym. Przez dlugi czas pytanie to pozostawalo bez od-
powiedzi — dopiero Zwonek ([2001]) wskazal kontrprzyklad.

Problem zupelnosci ma dluga historie. W 1981 roku Ohsawa ([Ohs 1981]) udowod-
nit, Ze ograniczone obszary pseudowypukte z brzegiem klasy C! sa zupelne w sensie
Bergmana, nastepnie Jarnicki i Pflug pokazali ([Jar—Pfl 1989]), Ze ograniczone i pseu-
dowypukte obszary zbalansowane z cigglym funkcjonatem Minkowskiego sa zupelne.
Obszary z obydwu wspomnianych klas sa hiperwypukte. Stad pytanie, czy hiperwypu-
ktosé implikuje zupetnosé. Herbort ([Her 1999]) oraz Blocki i Pflug ([Blo-Pfl 1998])
udowodnili, ze istotnie tak jest. Juz wczesniej Ohsawa ([Ohs 1993]) pokazal, ze z hiper-
wypukloéci wynika wyczerpywalno$é. A na plaszczyznie zespolonej, wyczerpywalnosé
pociaga za soba zupelnosé (zob. [Chen 2000]). Wida¢ zatem, ze te trzy pojecia (hiperwy-
puklosé, wyczerpywalnosé i zupetnosé) sa ze soba Scisle zwiazane. Jednakze zadne dwa
z nich nie sa rownowazne — wystarczy wspomniec¢ o réznych obszarach typu Zalcmana,

ktore sa doskonalymi przyktadami rozrézniajacymi te wtasnosci.
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Skoro problem zupelnosci obszaréw hiperwypuktych zostal rozstrzygniety, kierunek
dalszych badan wyznaczajg rézne typy obszarow niehiperwypuktych oraz, najmniej
do tej pory zbadanych, obszaréw nieograniczonych. Sukces metod zwiazanych z teorig
potencjatu i pluripotencjalu w badaniach problemu zupetnosci pozwala mieé¢ nadzieje,
ze ich zastosowanie w nowych sytuacjach réwniez przyniesie efekty.

W Rozdziale I niniejszej pracy definiujemy wszystkie niezbedne pojecia i przedsta-
wiamy gléwne, poznane do tej pory, rezultaty badan. Zakres materialu tam zaprezen-
towanego podyktowany jest jego zwiazkiem z gléwnymi tezami tej rozprawy oraz z
zainteresowaniami autora i nie pretenduje do miana kompletnego przegladu wynikéw
z tej dziedziny. Skupiamy sie gléwnie na wspomnianych wyzej wlasnosciach hiperwy-
puktosci, wyczerpywalnosci i zupelnosci w sensie Bergmana. Przyjrzymy si¢ dokladniej
zwiazkom miedzy nimi oraz ich charakteryzacjom w pewnych przypadkach (obszary
plaskie i obszary Reinhardta) ze szczegélnym uwzglednieniem aspektow zwiazanych z
teoria potencjatu.

W Rozdziale II podejmujemy probe charakteryzacji zupelnosci w sensie Bergmana
na plaszczyznie zespolonej za pomoca poje¢ zwiazanych z teoria potencjatu. Podajemy
pewne wyniki czeSciowe, ktérych dowody bazuja na metodach uzytych w [Zwo 2002]
przy charakteryzacji wyczerpywalnosci.

Wnhioski z Rozdziatu 1I dotyczace specjalnych obszaréw zebraliémy w Rozdziale III.
Dowodzimy pelnej charakteryzacji ze wzgledu na zupetnos¢ duzej rodziny obszarow
typu Zalcmana. Jest to odpowiedZ na pytanie postawione przez Pfluga w [Pfl 2000].
Zestawiamy warunki typu Wienera dla tych obszaréw réwnowazne zupelnosci, wyczer-
pywalnosci i hiperwypuktosci.

Rozdzial IV poswiecony jest nieograniczonym obszarom Reinhardta. Podajemy cha-
rakteryzacje tych obszaréw Reinhardta w C? oraz c-hiperbolicznych obszaréw Rein-
hardta w C", ktore sa zupelne w sensie Bergmana.

Prace zamyka Dodatek, w ktorym zostaly zebrane niektore klasyczne twierdzenia i
definicje, wykorzystywane we wcze$niejszych rozdziatach, spis wazniejszych oznaczen
oraz lista cytowanej literatury. ChcielibySmy podkredlié, ze szeroki przeglad mate-
rialu, dotyczacego zagadnien zwigzanych z funkcjami Bergmana, znajdzie Czytelnik
w [Jar—Pfl 1993] i [Jar—Pfl 2004].

Autor chciatby ztozy¢ szczegdlne podzickowania dr. hab. Wlodzimierzowi Zwonkowi
— za liczne propozycje probleméw, cenne wskazéwki i dyskusje, ogromna pomoc w
trakcie pisania tej pracy oraz za cierpliwos¢; prof. Peterowi Pflugowi — za goscinno$c,
zachete do zajecia sie niektorymi problemami oraz trafne uwagi i wskazdéwki; prof.
Markowi Jarnickiemu — za inspiracje do zajmowania sie matematyka i wprowadzenie
w Swiat analizy zespolonej; oraz innym osobom, ktore przyczynity sie bezposrednio lub
posrednio do powstania tej pracy.

W trakcie pisania tej rozprawy, autor przebywal na stypendium DAAD w Carl von
Ossietzky Univeritat w Oldenburgu.



ROZDZIAL 1

WPROWADZENIE

1.1. Funkcje Bergmana

Niech D bedzie obszarem w C™. Oznaczmy przez L3 (D) zbiér funkcji holomorficz-
nych na D catkowalnych z kwadratem. Jest to osrodkowa przestrzen Hilberta z iloczy-
nem skalarnym

Fog)p = /D fgde?,  f.ge LA(D),

gdzie £2" oznacza 2n—wymiarowa miare Lebesgue’a. Norme w tej przestrzeni oznaczmy
przez || fl|p, f € Lj (D).

Zauwazmy, ze z formuly catkowej Cauchy’ego (lub z Lematu D.5) wynika ciaglosé
funkcjonatu liniowego

Li(D)> fr f(z) €C

dla dowolnego punktu z € D. Dzigki twierdzeniu Riesza o reprezentacji (Twierdze-
nie D.33), istnieje rodzina funkcji Kp(-,2) € L3(D), z € D, o nastepujacej wlasnosci
reprodukcji

(f,Kp(,2))p = f(2), felL?D), z€D.

Funkcje
Kp:DxD—C

nazywaé bedziemy funkcjq jedrowq Bergmana, a funkcje jej wartosci na przekatnej
zbioru D
kD('Z) = KD(Z7Z)7 ZED;

jadrem Bergmana.

Niektore wlasnosci funkcji jadrowej i jadra Bergmana zebrane sa w ponizszej obser-
wacji.

OBSERWACJA 1.1 ([Jar-Pfl 1993]). Niech D, D; (j = 1,2,...,) bedg obszarami w
C".

(a) Kp(z,w) =(Kp(-,w),Kp(-,2))p = Kp(w, z2), z,w € D.

(b) Odwzorowanie (z,w) — Kp(z,w) jest holomorficzne w D x D*, gdzie D* :=

{z: z € D}.
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(c) Jezeli (p;) ;e jest baza ortonormalng przestrzeni L3 (D), gdzie J # & jest skon-
czonym lub przeliczalnym zbiorem wskaznikow, to

Kp(z,w) Zgoj z,we D
jeJ
oraz kp(z) = Z 0, (2)]?, z € D.
jeJ

(d) Zachodzi wzor

kp(z) =sup{|f(2)]*: f € Ly(D), |fllp <1},  =2€D.

(e) Jezeli D1 C Do, to kp, = kp,.

(f) Jezeli D = U;; Dj jest sumq wstepujgcego ciggu obszaréw, to Kp, — Kp
lokalnie jednostajnie na D x D oraz kp, — kp malejgco na D (przy j — 00).

(g) Jezeli D = ﬂ;’;l Dj jest przecigciem zstepujgcego ciggu obszaréw, to Kp, — Kp
lokalnie jednostajnie na D x D wtedy i tylko wtedy, gdy kp, — kp punktowo na
D (przy j — o).

(h) Niech G bedzie obszarem w C™ oraz niech F: D — G bedzie odwzorowaniem
biholomorficznym. Wtedy

Ka(F(2), F(w))det F'(z)det F'(w) = Kp(z,w),  zw € D.
(i) Jezeli G jest obszarem w C™, to
Kpxa((z1,w1), (22, w2)) = Kp(z1, 22) Kg(wy, we), 21,29 € D,wi,ws € G.
(j) Zachodzq wzory:

!
K, (zw) = (1= (w) "), zweb,

R 1 .
KA(O,I)TL (Z,w) - F H W, Z,w E A(O, ].) .

Przy nastepujacym zalozeniu dla obszaru D:
kp(z) > 0, z €D, (1.1)

funkcja log kp jest plurisubharmoniczna na D i mozna dobrze zdefiniowaé¢ potokreslong
dodatnio forme hermitowsk@

log k X X D, X e C™.
Z5zjazk ogkp(2)X; Xy, ze U, X €

Indukowana przez nia pseudometryke
Bp(z; X) :=+/Bp(z; X), ze D, X eC",

nazywamy pseudometrykqg Bergmana.
Pseudoodlegloscig Bergmana nazywamy funkcje

bp(z,w) :=inf{Lg, (o) : a € C*([0,1],D),a(0) = z,a(1) = w}, z,w e D,
gdzie

Ly (a / Bo(a(t): o/ (1)) dt

oznacza dtugos¢ krzywej a wzgledem pseudometryki Bp.
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OBSERWACJA 1.2 ([Jar—Pfl 1993]). Dla obszaru D C C"™ spelniajgcego warunek
(1.1), zachodzi

(a’) ﬁD(Z7)‘X):|)‘|5D(Z)X)7 ZGD,XG(C”?)\G(C.
(b) Bp(z; X1+ X3) < Bp(2;X1) + Bp(2;Xz), 2€D, X1, X5 €Cn.
(¢c) Bp: D xC"™ — Ry jest ciggla.
(d) bp: D x D — R, jest ciggla.
(e) Zachodzi wzor

M

Bp(z; X) = b(z ), ze D, X eC",
]{?D(Z

gdzie
Mp (2 X) == sup{|f'(2)X| : fe Ly(D),|flp=1.f() =0}, zeD,XeC"

(f) Niech G C C™ bedzie obszarem, spelniajgcym warunek (1.1), oraz niech F :
D — G bedzie odwzorowaniem biholomorficznym. Wtedy

Ba(F(2); F'(2)X) = Bp(z; X), ze D, X eC",
bg(F(2), F(w)) =bp(z,w), z,w € D.

(g) Jezeli G jest obszarem w C™, spelniajgcym warunek (1.1), to dla z1 € D, z5 € G
oraz X1 € C", X5 € C™ zachodzi

Boxc((21, 22); (X1, X2)) = /8 (22: X1) + B (22 Xa).

(i) Zachodzq wzory:

D=

I

Ix X2 O\
B, (z;X) = n-l-l( , ze€eB,, XeC"
e (B X) =Vt T Y A

[N

n X 2
Bao,n (2 X) = \/§<Z %) , z e A0, )", X € C".

Jj=1

(j) Jesli diam D < R < +o0, to

X
ﬁD(z’X)>%a ZGD,XGC”,
bD(Zl,ZQ) > @, 21,29 € D.

Warunek (1.1) nie zawsze jest spelniony. Jednak nawet w przypadku, gdy on zacho-
dzi, pozostaje jeszcze problem dodatniej okreslonosci pseudometryki Bergmana oraz
oznaczono$ci pseudoodlegtosci Bergmana.
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DEFINICJA 1.3. Dodatnio okreslong pseudometryke Bergmana nazywamy metrykq
Bergmana, a pseudoodleglosé Bergmana, spelniajaca warunek bp(z,w) =0 < z =
w, z,w € D — odlegltosciqg Bergmana.

O obszarze D, dla ktorego zachodzi warunek (1.1) i ponadto Bp jest metryka, mé-
wimy, ze jest G—hiperboliczny.

Dla obszaru D rozwazmy dwa warunki

VzeD 3fecLi(D): f(z)#0, (1.2)
VzeD,XeC"\{0} 3fcLi(D): f(2) =0, f(2)X #0. (1.3)

Obserwacje 1.1(d) oraz 1.2(e) pozwalaja wyciagnaé¢ nastepujace wnioski

WNIOSEK 1.4. Niech D C C" bedzie obszarem.

(a) Jgdro Bergmana kp jest dodatnio okreSlone w D wtedy i tylko wtedy, gdy za-
chodzi warunek (1.2).

(a) Jezeli warunek (1.2) jest spelniony, to obszar D jest S—hiperboliczny wtedy i
tylko wtedy, gdy zachodzi warunek (1.3).

Zauwazmy, ze jesli obszar D jest ograniczony, to obydwa warunki (1.2) i (1.3) sa
spetnione.

Jednym z istotnych faktéw dotyczacych zachowania si¢ funkcji Bergmana, jest na-
stepujace twierdzenie o lokalizacji.

TWIERDZENIE 1.5 ([Die-For-Her 1984], [Ohs 1984], por. [Jar—Pfl 1993]). Niech D C
C"™ bedzie ograniczonym obszarem pseudowypuklym oraz niech zg € 0D. Dla dowolnych
otwartych otoczen Uy CC U punktu zg istnieje stata C' > 0 taka, Ze dla dowolnego
zeVNU, X € C*, gdzie V oznacza dowolng spojng skladowq zbioru D NUs, zachodzi

(a) $Mv(z;X) < Mp(z;X) < My(z;X),
(b) &hv(2) < kp(2) < kv (2),
(¢) &0v(z:X) < Bp(z X) < CPy(z; X).

Inne wtlasnosci oraz przyktady jader i metryk Bergmana Czytelnik znajdzie np. w

[Jar—PAl 1993] i [Jar—Pfl 2004].

1.2. Wyczerpywalno$é¢ i b—zupelnosé

DEFINICJA 1.6. Méwimy, ze obszar D C C™ jest zupelny w sensie Bergmana (lub
krétko b—zupelny), jesli przestrzen metryczna (D, bp) jest zupelna, tzn. kazdy ciag Cau-
chy’ego wzgledem odleglosci Bergmana (lub krécej bp—cigg Cauchy’ego) jest zbiezny w
topologii naturalnej w D.

Méwimy, ze obszar D jest b—zupelny w punkcie zqg € 0D, jedli nie istnieje bp—ciag
Cauchy’ego zbiezny do zy w topologii naturalne;j.

Obszar D nazywamy wyczerpywalnym w punkcie zq € 0D, jezeli

Dahzn—lwo kp(z) = +oc. (1.4)
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Moéwimy, ze D jest wyczerpywalny, jesli jest wyczerpywalny w kazdym swoim punkcie
brzegowym.

W obszarze ograniczonym D C C™, zbiezno$¢ w topologii naturalnej bp—ciagu Cau-
chy’ego jest réwnoznaczna z jego zbieznoscia do pewnego punktu brzegowego D. W
zwigzku z tym mamy nastepujaca réwnowaznosé

OBSERWACJA 1.7. Obszar ograniczony D C C™ jest b—zupelny wtedy i tylko wtedy,
gdy jest b—zupelny w kazdym swoim punkcie brzegowym.

Z punktu widzenia zupelosci w sensie Bergmana warto zajmowaé sie jedynie obsza-
rami pseudowypuktymi.

TWIERDZENIE 1.8 ([Bre 1955]). KaZdy obszar b—zupelny jest pseudowypukly. Kazdy
obszar wyczerpywalny jest rowniez pseudowypukly.

Twierdzenie odwrotne nie jest prawdziwe. Kontrprzyktadem jest trojkat Hartogsa
D = {(z,w) € C? : |z| < |w| < 1} (zob. [Jar-Pfl 1993]), ktéry nie jest b—zupelny,
lub zbiér {z € C: 0 < |z|] < 1} na plaszczyznie zespolonej (nie jest ani b—zupelny, ani
wyczerpywalny).

Kobayashi postawil pytanie ([Kob 1959]):

Ktoére obszary pseudowypukle sa b—zupelne?

Sformulowal réwniez kryterium, ktore ciggle pozostaje najwazniejszym narzedziem
w badaniu b—zupelnosci.

TWIERDZENIE 1.9 ([Kob 1959], [Kob 1962]). Niech D C C" bedzie obszarem spel-
niajgcym warunki (1.2) i (1.3) oraz niech F bedzie gestym podzbiorem L3 (D).
Zatozmy, Ze zachodzi warunek

dla dowolnego ciggu (z1)5—q C D, niemajgcego punktu skupienia w D,
dla dowolnego f € F istnieje podciag (2x;)52, taki, Ze (1.5)

fim LR
J—00 kD(ij)

Wtedy D jest b—zupelny.

Ohsawa ([Ohs 1984]) zauwazyl, ze prawdziwa jest lokalna wersja powyzszego kry-
terium, tzn. dla dowolnego punktu zy € 9D wystarczy sprawdzi¢ warunek (1.5) dla
zbioru D NU, gdzie U jest pewnym otwartym otoczeniem zj.

W dalszej czesci pracy bedziemy postugiwaé sie gldwnie pojeciem b—zupelnosci w
punkcie, dlatego sformutujemy Twierdzenie 1.9 w innej postaci.

TWIERDZENIE 1.10. Niech D C C" bedzie pseudowypuklym obszarem ograniczonym

i niech zo € OD. Zaldzimy, ze F jest gestym podzbiorem L3 (D), oraz ze zachodzi naste-
pujgcy warunek

dla dowolnego ciggu (zx)5—q C D, zbieinego do 2y, i dla dowolnego f € F
istnieje podciqg (zx,)5=, taki, ze (1.6)
|f (z1;)]

lim —= — g,
j—oo /kp(zk;)



Wtedy D jest b—zupelny w punkcie z.
DowOD. Skorzystamy z nastepujacego lematu

LEMAT 1.11 ([Pl 1982]). Niech D C C™ bedzie ograniczonym obszarem pseudowypu-
ktym oraz niech (z)72, C D bedzie ciggiem Cauchy’ego wzgledem odleglosci Bergmana
bp, zbieznym do zy € OD.

Wtedy istnieje funkcja f € L2 (D), || fll =1 oraz cigg (Ax)52, C C,|\¢| = 1, taki, ze

KD('7 Zk) Li(D)
_— =

Ak
kp(zk)

f, (k — o).

Przypusémy, ze D nie jest b—zupelny w punkcie zq. Istnieje zatem bp—ciag Cauchy’ego
(21)52; C D zbiezny do zp. Wezmy funkcje f z Lematu 1.11 oraz funkcje g € F taka,
ze ||f — gllp < 3. Z wlasnosci jadra Bergmana mamy nastepujaca nieréwnosé

l9Czr)| 1 f o)l =gl > flar)l 1
Vkp(zr,) ~ Vkp(,) " VEkp(z,) 2

gdzie (zx,)32; jest podciagiem z warunku (1.6). Przechodzac z j do nieskoficzonosci i
stosujac warunek (1.6) do wyrazenia z lewej strony nieréwnosci oraz Obserwacje 1.1(d)
do ilorazu z prawej, otrzymujemy sprzecznosc. 0

Kobayashi postawil réwniez hipoteze, ze twierdzenie odwrotne do Twierdzenia 1.9
jest prawdziwe. Okazala si¢ ona bltedna — wynika to z ponizszego twierdzenia.

TWIERDZENIE 1.12 ([Zwo 2001]). Istnieje ograniczony b—zupelny obszar™ D C C,
dla ktorego zachodzi

lim inf .
im iny kp(z) < 400

UwaAGA 1.13. Warunek (1.5) w Twierdzeniu 1.9 mozna zastqpié nastepujgcym (zob.
[Blo 2004])
£ (2)]

limsup —= < .
z—aD /Kp(z) 17l

Dotychczas nie wiadomo, czy po takiej modyfikacji twierdzenie odwrotne jest prawdziwe.

Trzy pojecia zwiazane z kategorig obszaréw pseudowypuklych — hiperwypuktosé,
wyczerpywalnosé i b—zupetlno$é — staly sie przedmiotem intensywnych badan w ostat-
nich kilkudziesieciu latach. Znamy dzisiaj wszystkie zwiazki, jakie miedzy nimi zacho-
dza.

(D Obszar D podany jest efektywnie:

oo j°—1
D=0\ (U U Bery)u (o),

j=2 k=0

2mik
j5

) oraz rj := exp(—j1?)dlaj>2,k=0,...,5° — 1.
10
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Hiperwypuklo$¢ a wyczerpywalnosc¢.

TWIERDZENIE 1.14 ([Ohs 1993]). Ograniczone obszary hiperwypukie w C™ sq wy-
czerpywalne.

Twierdzenie odwrotne nie jest prawdziwe (kontrprzyktadem jest np. trojkat Hartogsa
albo pewne obszary typu Zalcmana — zob. Twierdzenie 1.39).

Dla obszaréw na ptaszczyznie zespolonej, ktérych dopetnienie nie jest zbiorem po-
larnym, klasyczna i zespolona funkcja Greena sa sobie rowne. Z ich wlasnosci (zob.
Dodatek) wynika

OBSERWACJA 1.15. Niech D C C bedzie obszarem ograniczonym. D jest hiperwypu-
kly wtedy i tylko wtedy, gdy jest reqularny (gdy kazdy jego punkt brzegowy jest punktem
reqularnym,).

Mamy nastepujace twierdzenie, dotyczace wyczerpywalnosci w punkcie.

TWIERDZENIE 1.16 ([Pfl-Zwo 2002]). Niech D C C bedzie obszarem ograniczonym
oraz niech zg € OD. Jezeli zg jest punktem reqularnym, to D jest wyczerpywalny w zg.

Wyczerpywalno$é w punkcie nie implikuje regularnosci (zob. Twierdzenie 1.39).
Wyczerpywalnosé a b—zupelnoscé.

Ogdélnie w C™ dla n > 1 wyczerpywalno$é nie implikuje b—zupelnosci (np. trojkat
Hartogsa). Inaczej jest na plaszczyznie zespolone;.

TWIERDZENIE 1.17 ([Hed 1972], [Chen 2000]). Niech D bedzie obszarem ograniczo-
nym w C. Wtedy dla kazdego punktu zy € 0D zbior funkcji holomorficznych w D, ktore
$g ograniczone w pewnym otoczeniu 2o, jest gesty w L%(D).

Z powyzszego twierdzenia wynika nastepujacy wniosek:

TWIERDZENIE 1.18 ([Chen 2000]). Niech D C C bedzie obszarem ograniczonym oraz
niech zg € 0D. Jesli D jest wyczerpywalny w punkcie zg, to D jest réwniez b—zupeiny
w 2q.

W szczegdlnosci, ograniczone obszary wyczerpywalne w C sqg b—zupetne.

Wynik ten, jednakze przy dodatkowym zatozeniu, mozna uogélni¢ na obszary w C".
TWIERDZENIE 1.19 ([Blo 2000]). Niech D C C" bedzie pseudowypuklym obszarem

ograniczonym speiniajgcym nastepujgcy warunek:

dla dowolnego zy € 0D istnieje baza otoczen (U;)52, punktu zo

taka, Ze D U Uj jest pseudowypukly dla kaZdego j > 1. (1.7)
Wtedy, jesli D jest wyczerpywalny, to jest rowniez b—zupelny.

Zauwazmy, ze warunek (1.7) jest zawsze spelniony dla obszaréw ptaskich.

Z zupelnosci w sensie Bergmana nie wynika natomiast wyczerpywalnosé, nawet dla
obszaréw tltustych (takich, ze D = int D) na plaszczyznie (zob. [Zwo 2001] oraz Twier-
dzenie 1.39).
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Hiperwypuklosé a b—zupelnosé.

Jednym z najogdlniejszych i najwazniejszych wynikéw jest ponizsze twierdzenie udo-
wodnione niezaleznie przez Herborta oraz Blockiego i Pfluga.

TWIERDZENIE 1.20 (zob. [Blo-Pfl 1998], [Her 1999]). Ograniczone obszary hiperwy-
pukte w C™ sq b—zupeine.

Kluczowa role w dowodzie tego twierdzenia odgrywaja oszacowania pochodzace z
teorii pluripotencjatu i dotyczace zbioréw podpoziomicowych zespolonej funkcji Greena
(zob. Definicja D.30).

Rozwazmy nastepujacy warunek dla funkcji Greena pseudowypuktego obszaru ogra-
niczonego D C C" z biegunem w w € D:

wl_i)nélD L*"({ze D: gp(w,z) < —1}) =0. (1.8)

Warunek (1.8) jest spelniony w przypadku, gdy D jest ograniczonym obszarem hi-
perwypuklym ([Blo—Pfl 1998], [Her 1999]) i implikuje zaréwno wyczerpywalnosé, jak i
b-zupetnosé ([Chen 1999], [Her 1999]). Zadna z implikacji odwrotnych nie jest praw-
dziwa (zob. [Her 1999] oraz [Zwo 2000a]).(?)

Z kolei na ptaszczyznie zespolonej, z Twierdzenia 1.16 i Twierdzenia 1.18 wynika

TWIERDZENIE 1.21. Niech D C C bedzie obszarem ograniczonym i niech zg € 0D
bedzie punktem reqularnym. Wtedy D jest b—zupelny w zg.

Z uwag dotyczacych zwigzku b—zupelnosci i wyczerpywalnosci wynika, ze istnieja
ograniczone obszary pseudowypuktle i b—zupeitne, ale nie hiperwypukte, np. pewne ob-
szary typu Zalcmana ([Chen 1999], zob. Twierdzenie 1.39). Herbort ([Her 1999]) podal
inny przyktad takiego obszaru, bedacy pseudowypuklym obszarem Reinhardta.

Skoro problem zupetnosci zostal rozwiazany w klasie ograniczonych obszaréw hiper-
wypuklych, wiec naturalne jest skupienie sie na obszarach niehiperwypuktych lub (i)
nieograniczonych.

Wspomnianymi dwiema klasami obszaréw, ktore obejmuja pewne obszary b—zupeine,
ale niehiperwypukle, zajmiemy sie w innych czesciach pracy (obszarami Reinhardta —
w Rozdziale 1.3 i Rozdziale IV, obszarami typu Zalcmana — w Rozdziale III).

Zacytujmy jeszcze dwa wyniki, ktore dotycza zupelnosci w sensie Bergmana obszarow
niekoniecznie hiperwypuktych.

TWIERDZENIE 1.22 ([Chen-Zhang 2000]). Niech D C C" bedzie pseudowypukiym
obszarem ograniczonym, ktorego brzeg jest lokalnie wykresem pewnej funkcji ciggley.
Wtedy D jest b—zupelny.

TWIERDZENIE 1.23 ([Jar-Pfl-Zwo 2000]). Ograniczone pseudowypukle obszary zba-
lansowane w C™ sq b—zupelne.(

Pomimo duzego zainteresowania problematyka zwigzana z funkcjami Bergmana, nie-
wiele jest wynikéw dotyczacych obszaréw nieograniczonych (zob. [Chen—Zhang 2002],
[Chen-Kam-Ohs 2004]). Oto niektére z nich:

(2)Dla pseudowypuklych ograniczonych obszaréw Reinhardta w C2 warunek (1.8) jest réwnowazny
b—zupelnosci (zob. [Zwo 2000a)).

(3)Zbalansowane obszary pseudowypukte, dla ktérych funkcjonal Minkowskiego nie jest ciagly, nie
sg hiperwypukte.
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TWIERDZENIE 1.24 ([Chen—Zhang 2002]). Niech D C C™ bedzie obszarem pseudo-

wypuklym.®) Jesli zachodzi warunek:
dla dowolnego w € D 1istnieje a > 0 takie, ze

. . . (1.9)
zbior {z € D : gp(w,z) < —a} jest relatywnie zwarty w D,
to D posiada metryke Bergmana.

Jesli, ponadto,

dla dowolnego ciggu punktow (zp)r—y C D, niemajgcego punktu skupienia w D,

istniejq podcigg (2x;)j=, i liczba a >0 takie, Ze
dla dowolnego zbioru zwartego K
zachodzi {z € D : gp(zk,;,2) < —a} C D\ K, dla dostatecznie duzych j,
(1.10)

to D jest zupeiny w sensie Bergmana.

WNIOSEK 1.25 ([Chen—Zhang 2002]). Niech D bedzie obszarem w C™. Jesli istnieje
ujemna Scisle plurisubharmoniczna funkcja wyczerpujgca na D, to D jest b—zupelny.

TWIERDZENIE 1.26 ([Chen—-Kam—Ohs 2004]). Niech
D :={(z,w) e C" xC: Imw > p(2)},

gdzie p jest nieujemng funkcjq plurisubharmoniczng na C" takg, Ze lim|, o p(2) =
+00.
Wtedy kp > 0 oraz D jest b—zupelny.

Na uwage zastuguje réwniez fakt, ze zupelno$¢ w sensie Bergmana mozna badaé
lokalnie.

TWIERDZENIE 1.27 ([Nik 2003]). Niech D C C bedzie obszarem, ktérego dopelnienie
nie jest zbiorem polarnym.

Jezeli dla kaZdego punktu zg € 0D istnieje otwarte otoczenie U takie, Ze kazda skia-
dowa spojna zbioru D NU jest b—zupeilna, to D jest rowniez b—zupeiny.

Jezeli D jest b—zupelny, to dla dowolnego kota A, zbiory DN A oraz DN (C\ A) sq
b—zupelne.

Powyzej zaktadamy, ze punkt oo jest punktem brzegowym dowolnego obszaru nie-
ograniczonego.

Przyjrzyjmy sie teraz blizej wtasnosci wyczerpywalnosci obszaréw. Poza faktem, ze
hiperwypuklo$é oraz warunek (1.8) implikuja wyczerpywalno$¢ w przypadku obszaréw
ograniczonych, mamy jeszcze jedno ogdlne twierdzenie w C™.

TWwIERDZENIE 1.28 ([Pfl 1975], zob. [Jar-Pfl 1993]). Niech D C C" bedzie ograni-
czonym obszarem pseudowypukiym. Zaloimy, ze punkt zo € 0D spelnia nastepujgcy
swarunek zewnetrznego stozka” (,outer cone condition”)

istniejq liczby r € (0,1],a > 1 oraz cigg (wg)ze; C C"\ D

takie, ze lim wy = zo oraz D N B(wg, r||wg — 20]|*) = @.
k—o0

Wtedy D jest wyczerpywalny w punkcie zg.

(4) Oryginalne twierdzenie jest sformulowane ogélniej — dla rozmaitoéci Steina.
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Wyczerpywalnosé i b—zupelnosé a teoria potencjatu.

Dla ograniczonych obszaréw na ptaszczyznie zespolonej mamy pelna charakteryzacje
wyczerpywalnosci w jezyku teorii potencjahu.

Wprowadzmy najpierw nastepujaca funkcje potencjatlowa dla obszaru D C C (zob.
[Zwo 2001] i [Pi-Zwo 2003]):

=

do
Yp(2) = /o 63(—logcap (A(z,6) \ D))’

zeC, (1.11)

gdzie cap B oznacza pojemno$é¢ logarytmiczna zbioru borelowskiego B C C (zob.
Dodatek).

OBSERWACJA 1.29. Niech D bedzie obszarem ograniczonym w C.

(a) Funkcja vp jest ciggla na D i polciggla z dotu na D. Ponadto yp = +0oo na
C\ D.

(b) Zachodzq nastepujgce oszacowania:

1 e 22k o0 22k o
5 < z) <8 , zeD,
8 I;) —logcap (Ax(z) \ D) 7p(2) ; —logcap (Ax(2) \ D)

gdzie

1 1

Charakteryzacja wyczerpywalno$ci (przedstawiona ponizej) dla pewnego typu obsza-

réw plaskich (np. obszaréw typu Zalcmana) przyjmuje prostsza posta¢ warunku typu
Wienera (por. Twierdzenie D.26 oraz Twierdzenia 1.38 i 1.39).

TWIERDZENIE 1.30 ([Zwo 2001]). Niech D bedzie obszarem ograniczonym w C i
niech zo € 0D. Wtedy nastepujgce warunki sq rownowazne:

(a) limps.—z, Yp(2) = +00.
(b) D jest wyczerpywalny w zg.

O bliskim zwiazku funkcji v oraz jadra Bergmana $wiadczy réwniez ponizsze twier-
dzenie, z ktérego, w szczegdlnosci, wynika kryterium na wyczerpywalnosc.

TWIERDZENIE 1.31 ([Pfl-Zwo 2003]). Ustalmy d > 1. Istnieje stata C > 0 taka, Ze:
(a) Dla dowolnego obszaru D C C takiego, ze diam D < d zachodzi

Cvp(z) < kp(2), zeD.
(b) Dla dowolnego obszaru D C C takiego, ze & < diam D < d zachodzi
kp(z) < Cmax{1,vp(z)(logvp(2))?}, zeD.
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Zwiazek wyczerpywalnosci z teoria potencjatu (Twierdzenie 1.30) oraz charakteryza-
cja b—zupelnych obszaréw typu Zalcmana ([Juc 2004]), uzyskana przy uzyciu podobnych
metod, sktaniajg do podjecia proby charakteryzacji b—zupetnosci dowolnego obszaru na
plaszczyznie zespolonej.

Niech D bedzie obszarem w C. Zdefiniujmy funkcje

i do
() = ~ -eE
b /0 (52\/— log cap (A(z,6) \ D)

Dla obszaru D C C, punktu 2o € D oraz dla krzywej o : [0,1] — D rozwazmy
nastepujacy warunek:

1
a: [0,1) — D klasy C*, o/(t) #0,t €[0,1), lim a(t) = zo, / &/ (t)] dt < +o0.
- 0

(1.12)
W Rozdziale I udowodnimy nastepujace twierdzenia:

TWIERDZENIE 1.32 (TWIERDZENIE 2.3). Niech D C C bedzie obszarem ograniczo-
nym oraz niech zo € dD. Jesli obszar D nie jest b—zupelny w punkcie zo, to istnieje
krzywa o : [0,1] — D taka, Ze krzywa al[o 1y spelnia warunek (1.12), oraz:

istnieje stala M >0 taka, ze Yp(a(t)) < M dla kazdego t € [0,1]. (1.13)

TWIERDZENIE 1.33 (WNIOSEK 2.6). Jesli D C C jest obszarem ograniczonym ta-
kim, Ze Yp(z0) = 400 dla punktu zg € 0D, to D jest b—zupelny w punkcie zo.

W szczegolnosci, jesli yp(z) = +oo dla wszystkich z € 0D, to obszar D jest b—zupel-
ny.

Twierdzenie odwrotne do Twierdzenia 1.33 nie jest prawdziwe. Co wiecej, z b—zupel-
nosci obszaru D w 2o nie wynika, ze Yp(29) = +00, ani nawet limps._.,., Yp(z) = +00
(por. kryterium na wyczerpywalno$¢ w Twierdzeniu 1.30). W Przykladzie 2.7 kon-
struujemy b—zupelny obszar D taki, ze dla punktu 0 € 9D mamy 7p(0) < 400 i
liminfps.09p(2) < +oo.

Nie wiadomo, czy twierdzenie odwrotne do Twierdzenia 1.32 jest prawdziwe. Jed-
nakze, przy dodatkowym zatozeniu dla obszaru D i punktu zp, mozna udowodnic¢ jego
stabsza wersje.

TWIERDZENIE 1.34 (TWIERDZENIE 2.8). Niech D C C bedzie obszarem ograniczo-
nym oraz zg € 0D. Zalézmy, Ze istnieje krzywa «, ktora spelnia warunek (1.12) oraz
dwa ponizsze:

istnieje stala 6 € (0,1] taka, Ze dist (a(t),0D) = 0|a(t) — 20|, t €[0,1), (1.14)

R
istnieje stata R > 0 taka, Ze / ' ()| dt < —, 7> 1. (1.15)
o1 (4;(20)) 2

Wtedy, jesli ¥p(zg) < +o0, to D nie jest b—zupelny w punkcie zg.

Warunek (1.15) w powyzszym twierdzeniu wydaje sie by¢ jedynie technicznym za-
lozeniem. Natomiast warunku (1.14) nie mozna zastapi¢ warunkiem stabszym postaci
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dist (a(t),0D) > 0la(t) — 2z0|*, gdzie a > 1 — pokazuje to Przyklad 2.9. Oczywiscie,
nie mozna oczekiwaé, ze warunek (1.14) okaze sie¢ warunkiem koniecznym na to, aby
obszar D nie byl zupelny w punkcie z9.(®) Jednakze powyzsze twierdzenia pozwalaja
na wysuniecie pewnej hipotezy:

HipOoTEZA. Niech D C C bedzie obszarem ograniczonym oraz niech zg € 0D. Wtedy
nastepujgce warunki sg rownowazne:

(a) Obszar D nie jest b—zupelny w punkcie 2.

(b) Istnieje krzywa o : [0,1) — D spelniajgca warunki (1.12) 7 (1.13).

Jednym z narzedzi, uzytych w Twierdzeniach 1.30-1.34, jest Lemat 1.35.

Wprowadzmy najpierw kolejny obiekt zwiazany z teorig potencjatu. Dla zbioru zwar-
tego K C C, zdefiniujmy nastepujaca funkcje holomorficzng na C\ K

d A
/ MK(>, jesli cap K >0
K C—A

0, jeSlicapK =0

fr(C) = ,  (€C\K, (1.16)

gdzie py jest miara rownowagi zbioru K (zob. Dodatek).

LEMAT 1.35 ([Zwo 2001] i [Pl-Zwo 2003]). Ustalmy liczbe d > 1. Istnieje stala
C > 0 taka, Ze dla dowolnego obszaru ograniczonego D C C takiego, ze 0 € D oraz
diam D < d i dla dowolnego zbioru zwartego K C A(0, %l) roztgcznego z D, zachodzi
nierownosé

| fx % < —Clogcap K. (1.17)

UWAGA 1.36. ZaloZenie w powyzszym lemacie, Ze 0 € D mozna zastgpic¢ przez 0 €
oD.

Rzeczywiscie, mozemy to zrobié¢, poniewaz przesuwajac obszar D o pewien dosta-
tecznie maly wektor, uzyskamy 0 € D, a zbiér K nadal bedzie zawarty w A(O0, %)
Natomiast na sama nieréwnosé (1.17) z tezy translacja nie ma zadnego wplywu.

Obszary typu Zalcmana.

DEFINICJA 1.37. Obszarami typu (L) w sensie Zalcmana lub, krécej, obszarami typu
Zalemana albo obszarami typu (L) bedziemy nazywaé obszary postaci:

D :=A(0,1)\ ( A(xg, 1) U {0}),

o

k=1
gdzie o3, > Tpy1 > 0, limg_ oo 21 = 0, A(zg,7) C A(0,1) oraz A(xy, i) NA(zy, 1) =
o, dla k,l > 1,k #1.

Obszary te byly badane w kontekscie zupelnosci w sensie Bergmana (zob. [Ohs 1993],
[Chen 1999], [Chen 2001]). Pflug ([Pfl 2000]) postawil pytanie:

Ktére obszary typu (L), spelniajace warunek zj, = 2% sg b—zupelne?

W Rozdziale I1I odpowiadamy na to pytanie, podajac nastepujace ogdlne charakte-
ryzacje b—zupelnosci 1 wyczerpywalnoéci obszaréw typu (L).

(%) Jezeli usuniemy z obszaru D pewien zbiér polarny P (np. przeliczalny zbiér gesty), to nie wply-
nie to na b-zupeino$¢ w punkcie zo, poniewaz kp(z) = kp\p(2),z € D \ P. Funkcje calkowalne z
kwadratem przedluzaja si¢ przez zbiory polarne (zob. [Pfl-Zwo 2002]).
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TWIERDZENIE 1.38 (WNIOSEK 3.3). Niech D bedzie obszarem typu (L). Wtedy:
(a) D jest wyczerpywalny wtedy i tylko wtedy, gdy

vp(0) = +o0.

(b) D jest b—zupelny wtedy i tylko wtedy, gdy

TWIERDZENIE 1.39 (TWIERDZENIE 3.7, por. réwniez [Juc 2004]). Niech D C C
bedzie obszarem typu (L) spelniajacym nastepujgcy warunek:

istnieje liczba © € (0,1) taka, Ze Th+1 < O dla kazdego k > 1
Tk
Wtedy:
(a) D jest wyczerpywalny wtedy i tylko wtedy, gdy
— z2 log Ty,

(b) D jest b—zupelny wtedy i tylko wtedy, gdy

oo

1
— = +t00.
; T/ — logrg

(c) Jesli ponadto istnieje ©' > 0 takie, ze © < xzkl ,(k > 1), to D jest hiperwypukty
wtedy 1 tylko wtedy, gdy

Z logxk .
logry,

1.3. Pseudowypukle obszary Reinhardta

DEFINICIA 1.40. Obszarem Reinhardta nazywamy obszar D C C™ taki, ze dla do-
wolnego z € D,0; € R,j =1,...,n zachodzi (e12,...,e"%2,) € D.

Dla punktu z € C?, oznaczmy log|z| := (log|z1],...,log|z,]) € R™ oraz log D :=
{log|z| : z€ DNCZ}.
Z definicji obszaréw Reinhardta wynika, ze odwzorowanie

{obszary Reinhardta w C"} 5 D + log D € {obszary w R"}

jest bijekcja.
Oznaczmy dodatkowo

Vi ={2€C": z; =0}, j=1,...,n.

Pseudowypukte obszary Reinhardta scharakteryzowane sg w nastepujacy sposéb:
17



TWIERDZENIE 1.41 (zob. [Vla 1966], [Jak—Jar 1998]). Obszar Reinhardta D C C"
jest pseudowypukly witedy i tylko wtedy, gdy log D jest wypukly oraz dla dowolnego
j=1,...,niXe A(0,1)

jesli DNV; £ @ i (2,2;,2")e D, to (2,Xz5,2") € D.

Dodatkowo mamy nastepujace twierdzenie dotyczace hiperwypuktosci:

TWIERDZENIE 1.42 ([Zwo 2000b], [Zwo 2000a], por. [Car-Ceg—Wik 1999]). Niech
D C C™ bedzie pseudowypuktym obszarem Reinhardta. Wtedy nastepujgce warunki sq
rownowazne:

(a) D jest ograniczony oraz dla kazdego j =1,...,n
jesli DNV; #@, to DNV, # @.
(b) D jest hiperwypukly.
Dla wypuktego zbioru 2 C R" oraz punktu a €  zdefiniujmy
C(Qa) :={veR": a+Riv CQ}.

Wiadomo, ze zbiér €(2,a) jest domknietym stozkiem wypuklym o wierzchotku w
punkcie 0 € R™. Ponadto, jego definicja nie zalezy od wyboru punktu a € €.
Podobnie, dla dowolnego pseudowypuklego obszaru Reinhardta D C C™ zdefiniujmy
stozki:
¢(D):={veR": a+Ryv ClogD},

(D) := {v € R" : istnieje tEeroo exp(a + tv) € D},
¢'(D) := &(D) \ €(D).

Definicje nie zaleza od punktu a € log D, poniewaz, zgodnie z Twierdzeniem 1.41, log D
jest wypukty.

Mozemy teraz sformutowac¢ twierdzenie — charakteryzacje ograniczonych b—zupet-
nych obszaréw Reinhardta.

TWIERDZENIE 1.43 ([Zwo 1999al, [Zwo 2000a]). Niech D C C™ bedzie ograniczonym
pseudowypuklym obszarem Reinhardta. Wtedy nastepujgce warunki sq réwnowazne:

(a) D jest b—zupelny.

(b) &(D)NQ" = 2.

W Rozdziale IV udowodnimy analogon tego twierdzenia dla nieograniczonych obsza-
ré6w Reinhardta w C2.

TWIERDZENIE 1.44 (TWIERDZENIE 4.1). Niech D C C? bedzie pseudowypukiym
obszarem Reinhardta (niekoniecznie ograniczonym) takim, Ze log D nie zawiera linii
prostych. Wtedy nastepujgce warunki sg rownowazne:

(a) D jest b—zupelny.

(b) ¢'(D)NQ? = 2.
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Bedziemy potrzebowaé kilku faktow, dotyczacych przestrzeni funkcji holomorficz-
nych calkowalnych z kwadratem.
Dla obszaru Reinhardta D C C™ zdefiniujmy:

£=E(D)={z" € Lj(D): a € 2"},
A=A(D):={aeZ": z* € L}(D)},
J(D):={je{l,...,n}: V;ND + &}.

OBSERWACJA 1.45. Dla pseudowypuktego obszaru Reinhardta D C C™, przestrzen
Span £(D), czyli najmniejsza podprzestrzen liniowa, zawierajgca zbior E(D), jest gesta
w L3 (D).

LEMAT 1.46 ([Zwo 1999a], [Zwo 2000a]). Niech D C C" bedzie pseudowypuklym
obszarem Reinhardta oraz niech o € Z™. Wtedy

2* € L7 (D) <= VYove&D)\{0}: (a+1,v) <0.

7, powyzszego lematu wynika, ze jesli obszar log D C R" zawiera linie prosta, to
przestrzen L7 (D) jest trywialna. Przekonamy sig, ze jest to warunek réwnowazny.

LEMAT 1.47 ([Jar—Pfl 1985]). Niech C bedzie otwartym stozkiem w R™ niezawierajq-
cym linii prostych. Wtedy istnieje niepusty otwarty zbior U C R™ taki, zZe dla dowolnego
uecU

Cc{zeR": (z,u) <0}

Z Obserwacji 1.45 oraz z Lematu 1.46 i Lematu 1.47 mozna wyciagnaé natychmia-
stowy wniosek:

OBSERWACJA 1.48. Niech D C C" bedzie pseudowypuklym obszarem Reinhardta.
Zbior log D zawiera linie prostq wtedy i tylko wtedy, gdy L2 (D) = {0}.

W szczegdlnosci, jesli log D nie zawiera Zadnej linii prostej, to zbiory E(D) i A(D)
5q niepuste.

Wprowadzmy rodzine specjalnych odwzorowan algebraicznych w C™.
Dla o € Z™ i dla z € C™" takich, ze z; # 0, gdy a; < 0, zdefiniujmy

«

2% =27t 2o

n

Dla A = [Ai]j,kzl

n € Z™*", zdefiniujmy odwzorowanie:

Du(z) = (4,24,

.....

A7 jest dobrze okreélone dla j = 1,...,n (A’ oznacza tu

gdzie z € C" jest takie, ze 2
J—ty wiersz macierzy A).

OBSERWACJA 1.49 ([Zwo 2000a]). Niech A € Z"*™. Odwzorowanie ®4 : C} — C?
jest biholomorfizmem wtedy i tylko wtedy, gdy | det A| = 1.

Beda nas interesowac tylko te odwzorowania algebraiczne, ktére spelniaja warunek
|det A| = 1 lub réwnowazny:

A~ ez oraz det A # 0.

Takie odwzorowania tworza grupe ze wzgledu na sktadanie.

Przypomnijmy definicje pseudoodleglosci Carathéodory’ego (zob. [Jar—Pfl 1993)).
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DEerINICJA 1.50. Dla dowolnego obszaru D C C™ oraz punktéow z,w € D, niech

cp(z,w) = sup{p(f(2), f(w)) : f € O(D,A0,1))},

gdzie
W—v

:= tanh !

, w,v € A0, 1),

jest odlegtoscia Poincarégo.

Moéwimy, ze obszar D C C™ jest c—hiperboliczny, jesli cp(z,w) > 0 dla z # w, z,w €
D.

Podamy teraz charakteryzacje c-hiperbolicznych obszaréw Reinhardta.

TWIERDZENIE 1.51 (por. [Zwo 2000al]). Niech D C C™ bedzie pseudowypuklym ob-
szarem Reinhardta. Wtedy nastepujgce warunki sq rownowazne:
(a) D jest c—hiperboliczny.
(b) Kazde odwzorowanie holomorficzne F': C — D jest stale.
(c) log D nie zawiera linii prostych,
DN V; jest albo pusty albo c-hiperboliczny (rozpatrywany jako obszar w C"~1).
(d) D jest algebraicznie biholomorficzny z ograniczonym obszarem Reinhardta
(tzn. istnieje A € Z"*™ |det A| = 1, takie, Ze ®4(D) jest ograniczony oraz
(I)A|D jest biholomorfizmem na obraz).

Z powyzszej charakteryzacji oraz z Twierdzenia 1.43 wynika nastepujace

TWIERDZENIE 1.52 (TWIERDZENIE 4.2). Niech D C C™ bedzie pseudowypuklym
c—hiperbolicznym obszarem Reinhardta. Wtedy nastepujace warunki sqg rownowazne:

(a) D jest b—zupelny.
(b) €(D)NQ" = 2.
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ROZDZIAL 1I

ZUPEENOSC OBSZAROW W C

Dotychczasowe wyniki badan w zakresie funkcji Bergmana i zupelnosci w sensie
Bergmana dowodza $cistego zwigzku tych poje¢ z teoria potencjatu na ptaszczyznie
zespolonej i teorig pluripotencjalu w C”. Wspomnijmy tu jedynie najbardziej ogdlne
rezultaty — hiperwypuklosé implikuje zaréwno wyczerpywalnosé (Twierdzenie 1.14) jak
i b—zupetnosé (Twierdzenie 1.21) w klasie ograniczonych obszaréw w C", a na plaszczyz-
nie zespolonej istnieje pelna charakteryzacja wyczerpywalnosci za pomoca kryterium
typu Wienera (Twierdzenie 1.30). Bardziej szczegblowa lista wynikéw znajduje sie w
Rozdziale I.

Dzigki szacowaniom wywodzacym sie z teorii potencjalu (uzyskanym przy uzyciu
metod podobnych do tych z pracy [Zwo 2002]), udalo si¢ odpowiedzie¢ na pytanie
Pfluga, dotyczace klasyfikacji b—zupelnych obszaréw typu Zalcmana oraz podaé¢ inny
kontrprzyktad do hipotezy Kobayashiego ([Juc 2004]). W naturalny sposéb pojawilto
sie zatem pytanie o calkowite rozwigzanie problemu charakteryzacji ptaskich obszaréw
b—zupelnych. Udalo sie nam uogdlnié rezultaty z pracy [Juc 2004] — przedstawiamy po-
nizej pewne warunki wystarczajace (Twierdzenie 2.3, Wniosek 2.6) i konieczne (Twier-
dzenie 2.8) na b—zupelnosé obszaru ograniczonego w jego punkcie brzegowym. Niestety,
do tej pory nie udato si¢ znalez¢ warunku rownowaznego. Jednak wspomniane wyniki
czedciowe oraz inne rezultaty zebrane w tym rozdziale, przyczyniajg sie do zrozumienia
problemu i pozwalaja na sformulowanie pewnej hipotezy (Hipoteza 2.10).

Wprowadzmy najpierw funkcje potencjatowa okreslona na C, ktéra bedzie odgrywaé
istotna role w dalszych rozwazaniach.

DEFINICJA 2.1. Niech D bedzie obszarem w C. Zdefiniujmy:

3 do
p(2) = ~ e Y
P /0 52\/—logcap (A(2,6)\ D)

Funkcja 7p jest modyfikacja funkcji vp (zob. (1.11)) wprowadzonej w [Zwo 2002].
Posiada tez podobne wlasnosci (por. Obserwacja 1.29).
OBSERWACJA 2.2. Niech D C C bedzie obszarem ograniczonym. Wtedy:

(a) Ap(2) < +o00 dla z € D oraz Ap(z) = 400 dla z € C\ D.
(b) Funkcja p jest pélciggla z dotu na C i ciggla na D.
(c) Zachodzq nastepujgce oszacowania dla z € D

o0

1 27 R . 27
1 <7p(2) <4
=3 \/— log cap (4;(z) \ D) j=2 \/— log cap (4;(z) \ D)
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gdzie

1
<|lw—z] < =}

Aj(z) ={weC: 5

92j+1

(d) Jezeliyp(z) < 400, to rowniez yp(z) < +oc.
(e) Jezelir > 1, to dla z € C

. N log4r
TAp(2) = 1) < Arp(r2) < 1/ Tt Ana) (23)

gdzie [ jest nieujemng i ciggla funkcjg na C.
(f) Jezeli G C C jest obszarem ograniczonym takim, Ze D C G, to 7p(z) = Fa(2)
dla z € C.

Niech D bedzie obszarem ograniczonym w C oraz niech zg € D. Rozwazmy naste-
pujacy warunek dla krzywej o : [0,1] — D:

1
a: [0,1) = DXklasy C', o/(t) #0,t€[0,1), }mi a(t) = 2o, / |/ ()] dt < +oo.
- 0

(2.4)

Krzywa o skonczonej dtugosci, ktérej pochodna sie nie zeruje, mozna sparametryzo-

waé w taki sposéb, zeby modul pochodnej nowej parametryzacji byt staty(®). W zwiazku
z tym warunek (2.4) dla krzywej « jest rownowazny warunkowi ponizszemu:

a: [0,1) — D klasy C*, %m% alt) =29, FJA>0: |d'(t)|=A,te][0,1). (2.4))

Dodajmy, ze stala A powyzej jest réwna dlugoéci krzywej a.

Jednym z dwoch gtownych rezultatéw, wigzacych teorie potencjatu z zupelnoscia w
sensie Bergmana, jest ponizsze twierdzenie. Jest ono uogélnieniem wyniku z [Juc 2004]
i uzasadnia wprowadzenie funkcji vp.

TWIERDZENIE 2.3. Niech D C C bedzie obszarem ograniczonym oraz niech zg € 0D.
Jesli obszar D nie jest b—zupelny w punkcie zg, to istnieje krzywa o« @ [0,1] — D taka,
ze krzywa a‘[O 1 spelnia warunek (2.4), oraz:

istnieje stata M >0 taka, ze Fp(a(t)) < M dla kazdego t € [0,1]. (2.5)

Gloéwng role w dowodzie powyzszego twierdzenia odgrywaja Twierdzenie 2.4 i tech-
niczny Lemat 2.5. Twierdzenie 2.4, ktore wykorzystamy wielokrotnie w innych czesciach
tego rozdziatu, zastuguje na wyrodznienie jako odrebny wynik.

TWIERDZENIE 2.4. Niech D C C bedzie obszarem ograniczonym takim, Ze zo € OD.
Jezeli D nie jest b—zupelny w zg, to istnieje krzywa o, spetniajgca warunek (2.4), o skon-
czonej dlugosct wzgledem metryki Bergmana @ taka, Ze jgdro Bergmana jest ograniczone

na «([0,1)).

(6) Jezeli modul pochodnej parametryzacji jest stale réwny 1, to jest to tzw. parametryzacja normalna.
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LEMAT 2.5. Niech D C C bedzie obszarem takim, ze A(0,3) \ A(0,55) C D C

A(0,1), 0 € D oraz krzywa o : [0,1) — D spelnia warunek (2.4°) dla punktu 0.
Zatozmy, Ze istnieje stata T > 0 taka, Ze

22l€
su <T. 2.6
U g cap (Ar(0) ) D) (26)

Wtedy
| Mo (et ) de > T3(0), (2.7)

gdzie stala T>0 zalezy jedynie od T' oraz od Srednicy obszaru D.

Bezposrednio z Twierdzenia 2.3 mozemy wyciagna¢ wniosek, z ktorego bedziemy
korzysta¢ w nastepnym rozdziale.

WNIOSEK 2.6. Jesli D C C jest obszarem ograniczonym takim, ze Yp(zp) = +00
dla punktu zo € 0D, to D jest b—zupelny w punkcie zq.

W szczegolnosci, jesli yp(z) = +oo dla wszystkich z € 0D, to obszar D jest b—zupel-
ny.

Warunek 7p(zp) = +00 nie jest warunkiem koniecznym dla b—zupelnosci obszaru D w
punkcie zg € dD. W Przyktadzie 2.7 konstruujemy obszar zupelny w sensie Bergmana,
dla ktérego ten warunek nie zachodzi w pewnym punkcie brzegowym.

Przez analogie do Twierdzenia 1.30, mozna wysunaé przypuszczenie, ze b—zupetnosé
w punkcie zg jest réwnowazna temu, ze limps,—.., 7p(z) = +oo. Jednakze obszar z
ponizszego przykitadu wyklucza réwniez taka mozliwosé.

PRZYKEAD 2.7. Niech D bedzie obszarem okreslonym w nastepujgcy sposob:

pi= 200\ (U U Blesur U 10))
j=2 k=0

gdzie x; 1, = %ei%k, dlak=0,...,27 — 1, oraz r; > 0 sq takie, ze —logr; = 237 j4,
Tak zdefiniowany obszar D jest b—zupelny, jednakze zachodzi 4p(0) < 400 oraz
liminfpgz_@ ’/')/\D(Z) < +00.

W szczegdlnosci, D nie jest wyczerpywalny (w zerze).

Nie wiadomo, czy twierdzenie odwrotne do Twierdzenia 2.3 jest prawdziwe. Jed-
nakze, przy dodatkowym zatozeniu dla obszaru D i punktu 2y, mozna udowodni¢ jego
stabsza wersje.

TWIERDZENIE 2.8. Niech D C C bedzie obszarem ograniczonym oraz zg € O0D.
Zaldzimy, zZe istnieje krzywa o, ktora spetnia warunek (2.4) oraz dwa ponizsze:

istnieje stala 0 € (0,1] taka, Ze dist (a(t),0D) = 0|a(t) — zo|, t € [0,1), (2.8)
R
istnieje stata R > 0 taka, Ze / o' ()| dt < —, 7> 1. (2.9)
1 23
2043 (A;(20))



Wtedy, jesli yp(zo) < +oo, to D nie jest b—zupelny w punkcie zg.

Zwroémy uwage, ze zatozenia Twierdzenia 2.8 dotyczace krzywej « sg spetnione dla
punktu zy € 9D, jedli mozna wpisa¢ w obszar D pewien kat o wierzchotku w zg. W
szczegblnoscei, zachodzi to np. dla obszaréw typu Zalcmana (zob. Rozdzial III).

Warunek (2.9) w zalozeniu twierdzenia jest, zdaniem autora, czysto techniczny.
Natomiast warunku (2.8) nie mozna zastapi¢ warunkiem stabszym dist (a(t),0D) >
Ola(t) — z0|%, gdzie a > 1 — pokazuje to Przyklad 2.9.

PRZYKLAD 2.9. Niecha € (1,2) oraz R > 0 bedg liczbami rzeczywistymi. Wybierzmy
p,q € N takie, ze 1 + § < a. Zdefiniugmy obszar D w nastepujgcy sposob:

D :=D;UDp.y,

gdzie
Dpro:={2€ A(0,1): Rez>0,|Zmz| < R(Rez)*}
oraz
Dy = A(0,1) (U U Az p,75) u{()})
J:2 :

Pray CZYm T 1= %eii%, dla k = 0,...,2P7 — 1, i r; > 0 sq takie, ze —logr; =
2(2a+p)j j4,

Wtedy:

— krzywa o(t) = i — it,t € [0,1), spelnia warunki (2.4°) i (2.9) oraz istnieje
to € (0,1) takie, Ze

dist (a(t), OD) > §

la(t)]®, dla t > to;

- p(0) < 4o00;
— D jest b—zupelny.

Powyzsze wyniki sktaniaja do wysuniecia pewnej hipotezy, ktéra moze charaktery-
zowaé b—zupelnosé.

HipoTEZA 2.10. Niech D C C bedzie obszarem ograniczonym oraz niech zy € 0D.
Wtedy nastepujgce warunki sg réwnowazne:

(a) Obszar D nie jest b—zupelny w punkcie 2.
(b) Istnieje krzywa o : [0,1) — D spelniajgca warunki (2.4) i (2.5).

2.1. Dowody twierdzen

DowOD OBSERWACJI 2.2. Dowdd nie odbiega zasadniczo w szczegdtach od dowodu
Obserwacji 1.29 (por. [Zwo 2002], [Pfl-Zwo 2003]).
(a). Jezeli z € D, to A(z,e) C D dla pewnego £ > 0. Wtedy — log cap (A(z,8)\ D) =

Lo _ (i ds
+oodla0<d<eiqp(z)= [ T e G D) <
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Jezeli natomiast z ¢ D, to D N Z(z e) = @ dla dostatecznie matego € > 0 i, dzigki
Twierdzeniu D.23(f), 3p(z) > [, 52\/Tg = 400.
(b). Ustalmy punkt w € C oraz liczbe t > 0 taka, ze 7p(w) > t. Istnieje §y > 0 takie,
1

J 1 do
t
e f60 52\/— log cap (Z(w,&)\D) =
1

Dla punktu z € C takiego, ze 0 < |w — 2| < 6 < ; zachodzi nieréwno$¢ (dzieki
Twierdzeniu D.23(d))

1
—log cap (A(w,d) \ D)

a po scatkowaniu mamy

- i ds
t<n(z) + | b
Jo (52\/— log cap (A(w, ) \ A(z,9))
Z twierdzenia Lebesgue’a o przechodzeniu do granicy pod znakiem caltki oraz z dowol-
nosci t wynika, ze liminf, ., Yp(2) = Yp(w).
Jezeli z,w € D, to w analogiczny sposob otrzymujemy oszacowanie

Yo (w) =7p(2)]

Ju

- /4 dé N /111 dd ’
€ (52\/— log cap (A(w,d) \ A(z,6)) € 52\/— log cap (A(z,68) \ A(w,d))

gdzie € > 0 jest taka liczba, ze A(z,e) U A(w,e) C D. Stosujac ponownie twierdzenie
Lebesgue’a dostajemy, ze lim,_,,, Yp(z) = Yp(w).
(c). Wezmy z € D. Korzystajac z Twierdzenia D.23(d) oraz z subaddytywnosci
funkcji x — /x,z > 0, dostajemy
oo

Z/zk do <22k+1 1

SR 02 \/— log cap (A(z, 9)\ D) k=2 \/— log Cap zZ, ik) \ D)

k1 1 = ) 2kt 1
R Ve YT O O e e vEIyy

7 drugiej strony, mamy

Z/ d(S_ S in_l 1

57T 02 \/— log cap (A(z, 9)\ D) j=2 \/— log cap (Aj+1(z) \ D)
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(d). Wtasno$é¢ ta wynika z nieréwnosci w punkcie (c¢), Obserwacji 1.29(b) oraz wla-
snosci szeregow.

(e). Ustalmy r > 1 oraz z € C. Dokonamy zmiany zmiennych (6 ~» rd) w calce
ponizej:
/ 1 do
0 42 \/— log cap (A(rz,4) \ rD)

VrD (TZ) =

1

1 /47’ do
"Jo 52\/— logr — log cap (A(z,8) \ D)
Wynika stad lewa nier6wno$é we wzorze (2.3). Funkcje f definiujemy w nastepujacy
sposob
1
1 [= do
fe) =1 [ _ ,
"I 52\/— log cap (A(z,0) \ D)

a jej ciaglosdci dowodzimy postepujac podobnie jak w punkcie (b).
Aby udowodnié prawa nieréwnosé, wystarczy zauwazyé, ze dla ¢ € (0, -=)

4r
—log cap (A(z,0) \ D) o log 4r
—logr —logcap (A(2,8) \ D) ~ log4 "
RzeczywiScie, mamy — log cap (Z(z, 5)\D) > log4r, a funkcja x — ﬁ, x > log4r,

jest malejaca.

(f). Wlasnoé¢ ta wynika z monotonicznosci pojemnosci logarytmicznej (Twierdze-
nie D.23(a)) oraz z monotonicznosci funkcji x +— #gx, x> 0. O

DowOD TWIERDZENIA 2.3. Bez straty ogélno$ci mozemy zalozyé, ze zop = 0 oraz
A(0, %) \ A(0, 2%0) C D c A(0, %) 7 wyjsSciowym zbiorem D postepujemy kolejno
w nastepujacy sposéb: przesuwamy o wektor —zo; jezeli dp = sup,cp |2| < 2%, to
przeksztatcamy go przez homoteti¢ z — rz, gdzie r > F1210 > 1; bierzemy sume¢ z
A(0, %) \ A(0, 2%0) i czesé wspdlng z A(0, %) Powyzsze przeksztalcenia nie wplywaja
na zupelnosé obszaru D (Obserwacja 1.2(f) i Twierdzenie 1.27) oraz zachowuja ograni-
czono$¢ funkcji yp (Obserwacja 2.2(e)).

Z Twierdzenia 2.4 wynika istnienie krzywej a o skonczonej dtugosci wzgledem me-
tryki Bergmana, spelniajacej warunek (2.4°) (réwnowazny warunkowi (2.4)), wzdluz
ktorej jadro Bergmana kp jest ograniczone od gory przez pewna uniwersalng stala.
Twierdzenie 1.31(a) i Obserwacja 1.29(a),(b) implikuja istnienie statej T' > 0 takiej, ze

2%

<T, telo1]. (2.10)

Przypusémy, ze funkcja 4p nie jest ograniczona na obrazie krzywej . Wtedy ist-
nieje rosnacy ciag punktow ()72, C [0,1] taki, ze a(tx) € A0, 5) i Yp(a(ts)) >
k. Dla kazdego punktu «(ty) spelnione sa zalozenia Lematu 2.5 z krzywa a(s) :=
a(sty),s € [0,1). Rzeczywiscie, po przesunigciu obszaru D o wektor —a(t;) mamy
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A(0,3)\A(0,55) C D C A(0,1), a warunek (2.10) gwarantuje, ze zachodzi nieréwnosé
(2.6) z ta sama stalg T.
Z tezy Lematu 2.5 wynika, ze

/tlc Mp (a(t); o (t)) dt = / Mp(a(s);d(s)) ds = THp(a(tr)), k > 10,
0 0

gdzie stata T > 0 nie zalezy od k. Mamy zatem

k—oo

1
/ Mp(a(t);a’(t)) dt > lim Tk = +oo0,
0

co wobec Obserwacji 1.2(e) oznacza, ze

1
Ls,(a) = /0 Bo (a(t); o/ (1)) dt = +oc.

Jest to sprzeczne z zalozeniem o «, wiec Yp musi by¢ ograniczona od géry na «([0, 1))
przez pewna stala M > 0. Z pdélciaglosci funkcji vp (Obserwacja 2.1(b)) wynika, ze
réwniez yp(0) < M. O

DowOD TWIERDZENIA 2.4.

Krok 1. Istnieje krzywa o : [0,1) — D klasy C' spelniajaca warunek (2.4) oraz
taka, ze Lg, (a) < +00.

Z zalozenia twierdzenia wynika, ze istnieje bp—ciag Cauchy’ego (zx)52; C D zbiezny
do punktu zg. Z tego ciagu wybieramy podciag (bedziemy numerowaé¢ go tymi sa-
mymi indeksami) taki, ze bp(zx, 2x4+1) < zerr- Nastepnie kazdg pare punktéw 2z, 241
taczymy krzywa o diugosci wzgledem metryki Bergmana nieprzekraczajacej 2% Po
wsklejeniu” wszystkich kawatkéw dostajemy krzywa (oznaczmy ja o : [0,1) — D) o
skonczonej dlugosci w sensie Bergmana, ktéra nie jest klasy C! co najwyzej w punktach
a"1(zx). Mozemy jednak ja wygltadzié, zachowujac skoficzono$é jej dtugosci, poniewaz
metryka i odleglto$é Bergmana sa ciagle (Obserwacja 1.2(c),(d)).

Ze wzgledu na fakt, ze dla obszaréw ograniczonych odlegtos¢ euklidesowa jest ogra-
niczona od gory przez odlegltoéé Bergmana pomnozona przez pewna stata (zob. Obser-
wacja 1.2(j)), krzywa o ma skonczona dtugos¢ (w zwyklym sensie).

Krok 2. Jadro Bergmana kp jest ograniczone na «([0,1)).

Przypusémy, ze jadro Bergmana kp nie jest ograniczone na tej krzywej. Wtedy ist-
nieje ciag (wg)72,; C a([0,1)) taki, ze limy_,oo wi, = 2o oraz limy_ 4 kp(wi) = +00.
Ciag (wg)g=1 jest réwniez bp—ciagiem Cauchy’ego, poniewaz krzywa « ma skonczona
dlugosé wzgledem (Gp. Dzigki Twierdzeniu 1.11 (por. [Pfl 1982], [Chen 1999]) istnieje
podciag (wg, )52, oraz funkcja f € Lj (D) takie, ze

| f(wg, )| .
—— =1, j— oo.
kD(wkj)
Przestrzen funkcji z L? (D) ograniczonych w otoczeniu zq jest gesta w L2 (D) (Twierdze-
nie 1.17). Dlatego istnieje funkcja g € L7 (D) taka, ze limsupps,_,. |g(2)] < oo oraz
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lg — fllp < 3. Korzystajac z ogdlnych wlasnosci jadra Bergmana (Obserwacja 1.1),

dostajemy
glwi)| _1f(w,)

VEn(wr) ~ /Epwn,)

Po przejsciu z j do nieskonczonosci otrzymujemy zadang sprzecznosé, co konczy dowdod.
O

J(wg, 1
I ~gllo > s 5

DowOD LEMATU 2.5. Bez straty ogélnosci mozemy zalozyé, ze |o(0)] < 1. Zdefi-
niujmy nastepujace zbiory:

2T 27
B,, = : —(m -1 | =1...,16.
{ZGC argze[m( )s 6 1} dla m 6
Nast@pnle dla kazdego j > 1, oznaczmy przez K; jeden sposéréd zbioréw A;(0)NB,, \ D,
=1,...,16, spelniajacy Warunek
1 1 1

“logeap (A;(0)\ D) © —logcap (K;) ~ —161ogcap (4,(0)\ D)’ (2.11)

Taki zbidr istnieje, dzigki Twierdzeniu D.23(d).
Przypomnijmy definicje funkcji fx, dla zbioru zwartego K C C:

dMK(A)
. jesli cap K > 0
/K C_)‘ Jesth eap ) CEC\Ka

0, jeSlicapK =0

fr(C) =

gdzie py jest miarg rownowagi zbioru K (zob. Dodatek).

Korzystajac z powyzszej definicji dla funkcji fr; i dzigki temu, ze kazdy ze zbiorow
K; zawiera si¢ w pewnym kacie B, mozemy, przeprowadzajac elementarne rachunki,
otrzymacé nastepujace oszacowania (o ile tylko zbiér K nie jest polarny):

9291 cos & < |fre, (w)] < 2772
| 4 J | (2.12)
2212 cos 7 < [, (w)] < 92i+4,

dla dowolnych j > 11w € A;(0) N D, gdzie [ > j + 4. Niech ponadto

fo(z) := z € D.

Latwo sprawdzi¢, ze || fol|p < 1 oraz supp | fo| <
Oszacujemy funkcje Mp(+; 1) na zbiorach DN A N(O). Ustalmy dowolne N > 9 takie,
ze K nie jest polarny oraz punkt w € An44(0) N D. Polézmy

= fO(w)fKN - fKN(w)fO'
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Zachodzi f € L#(D) oraz f(w) = 0. Korzystajac z nieréwnosci (2.12), oszacujmy od
dotu pochodng f w punkcie w:

1 1 1oy oV?2 _
|f’(w)’>m|f}(N(w)|—|fKN(w)|m>§Q2N 27—2N+2>22N 6,

Ponizej, szacujac norme w przestrzeni L? (D), korzystamy kolejno z nieréwnosci (2.12)
i Lematu 1.35 (zob. Uwaga 1.36), warunku (2.11) oraz zalozenia (2.6):

N2 frenlp <282 4 /—Clogcap Kn
N+2 4 \/=16Clog cap (An(0) \ D) < T/~ logcap (An(0) \ D).

1/l

<2
<2

Stala T7 > 0 zalezy jedynie od stalej C' z Lematu 1.35 (a wiec od $rednicy zbioru D)
oraz od T' z warunku (2.6).
Mamy zatem dla N > 9 oraz w € An44(0) N D:

|f (w)] 1 22N
> > :
Ifllp — T12° \/=logcap (An(0) \ D)

Mp(w;1) (2.13)

Zwréémy uwage, ze powyzsza nieréwnos$é (pomijajac Srodkowa czesé, w ktorej wystepuje
funkcja f) jest prawdziwa dla wszystkich N > 9, a nie tylko dla tych, dla ktérych zbior
K jest niepolarny.

Dlugo$c¢ odcinka krzywej o zawartego w pierscieniu Ay (0) mozna oszacowaé od dotu
(dzigki warunkowi (2.47)). Niech tn,tn4+1 € [0, 1] beda takimi punktami, ze ty < tny1,
la(tn)| = 3, |altnt1)| = swer oraz a[ty, tny1]) C An(0). Wtedy

1
"(t)|dt > Alty —t > la(ty) — aft >
A_l(AN(O)) ' (t)] tn =ty 2 |a(tn) — alty+1)] NI

gdzie stala A = |d/(t)], t € (0,1), pochodzi z warunku (2.4").
Ostatecznie, stosujac powyzsze oszacowania oraz Obserwacje 2.2(c) (pamietajmy, ze
A(0,2)\ A0, 55) C D), dostajemy:

oo

1
1
Mp(a(t);a/(t)) dt >y inf  Mp(w;1)———
/o D(a()’a()) NzgweAz\flf4(0)ﬂD p(w )2N+5

I — oN

= 21Ty Z \/— log cap (An(0) \ D) g

N=9

T35(0).

Stata T > 0 zalezy tylko od T, czyli od érednicy D i stalej T z warunku (2.6). O

DowOD PRZYKEADU 2.7. Pokazemy najpierw, ze Yp(0) < +o0o. Zauwazmy, ze dla
dowolnego j > 2

29 -1 2+l _q
AJ(O) \ D C U Z(ij,k, T‘j) U U Z($j+17k-, ’I“j+1).
k=0 k=0
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Zatem, dzieki wlasno$ciom pojemnosci (Twierdzenie D.23(d)), mamy

1 IR DY I 2

<2 < —
—logcap (A;(0)\ D) ~ = —logr; —logrji1 — 2%j4

(2.14)

i w konsekwencji

o0

27
\/— — < +o00.
;¢ logeap (4;(0) \ D) 22”

Wobec Obserwacji 2.2(c), oznacza to, ze 7p(0) < +oo.
Udowodnimy, ze dolna granica 7p(z), gdy z — 0, jest skoniczona. Polézmy:

1 1
AT+ 3
o 2j+1 27 .
y] T 2 - 2]‘1‘2, j > 3'

Wystarczy pokazaé, ze istnieje stala dodatnia C' taka, ze

Yoy;) <C, j=3 (2.15)

Z Obserwacji 2.2(d) i Twierdzenia 1.31(b) dostaniemy wtedy réwniez, ze funkcja vp
oraz jadro Bergmana nie daza do nieskonczonosci, gdy argumenty zmierzaja do zera.

Skorzystamy z Obserwacji 2.2(c), aby pokaza¢ (2.15). W tym celu zauwazmy, ze dla
ustalonego 7 > 3 zachodza inkluzje:

Ai(y;)\ D =g, gdy 1> j + 3,
Ajr2(y) \ D C A;(0)\ D,
Ajr1(y;) \ D C (A;41(0) U A;(0) U A;_1(0)) \ D,

A\ Dc {J AnO\D
mljrj?)—

Aw)\Dc |J Am(0)\ D, gdy 1 <j—1.
m=[—2

Udowodnimy ostatnig z nich — pozostate dowodzi si¢ podobnie lub znacznie proscie;.
Dla ustalonego j > 3 oraz | € {2,...,5 — 1} mamy A;(y;) N A, (0) = @, jesli zachodzi
jedna z nieréwnosci

1 1 1 1 1
yj+§<m ub 2_m<2lT_yj'

Pierwsza z nich zachodzi, gdy m <[ — 2, a druga — gdy m > [ + 3.
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Z powyzszych inkluzji, dzieki Twierdzeniu D.23(d),(f) i nieréwnosci (2.14), mamy

nastepujaca serie szacowan:

1
=0, gdy [ > 7+ 3,
—logcap (Ai(y;) \ D)
1 < 2
—logcap (A;12(y;) \ D) — 2254
1 6
R
_logcap (A]+1(y])\D) 22(.7_1)(j —1)
1 = 2 1
< < —— . ;
—logcap (4;(y;) \ D) m;—1 22mmA " 2200-2) (5 — 2)4
1 < 12 dy 2 <1<j—1,
—logcap (Ai(y;) \ D) ~ 220-2(I —2)F’ By 7
1

< 3.

—log cap (A2(y;) \ D)

Ostatecznie, korzystajac z Obserwacji 2.2(c), dostajemy

42

l

= 2
=3

2l

\/ log cap (Al(y]) \ D) - 4<

Pozostaje nam wykazac¢ zupelnosé obszaru D. Dowiedziemy, ze dla dowolnego punktu
z € D takiego, ze |z| = 57 (j > b) zachodzi:

~9J
kD(Z) 2 0—4,

; (2.16)

gdzie stata C > 0 nie zalezy od j.
Ustalmy j > 5 oraz z € D o module réwnym 5. Punkt z lezy na luku migdzy
pewnymi punktami postaci x; 1 i z;r+1. Mozna zauwazyc ze

27

— Xjpt1] < 227 < 225

|,k

dla wszystkich ,sasiednich” punktéw x; p, ;j k+1. Zatem, zbidr As;_5(z) \ D musi za-
wiera¢ co najmniej jedno kolto A(z;,r;). Wykorzystamy teraz Twierdzenie 1.31(a),
Obserwacje 1.29(b) oraz fakt, ze As;_5(2) \ D D A(x;x,r;) dla pewnego k:

C > 22l

glzz log cap (4;(2) \ D)

C 24710 C
7%= log cap (Agj—5(2) \ D) ~ 8

k() CVD

94j—10 C 9
—logr; 213 54

Stata dodatnia C' powyzej zalezy jedynie od $érednicy D.
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Nieréwnos$é (2.16) wyklucza istnienie krzywej a € C'([0,1), D), lim;_q a(t) = 0
takiej, ze jadro Bergmana kp jest ograniczone na «([0, 1)), poniewaz obraz krzywej «
musi przecina¢ nieskonczenie wiele okregéw o srodku w 0 i promieniach réwnych 2%

Na podstawie Twierdzenia 2.4, mozna wyciagnaé¢ wniosek, ze D jest b—zupelny w
punkcie 0. Pozostate punkty brzegowe sa regularne (Twierdzenie D.25), a zatem D jest
wyczerpywalny (Twierdzenie 1.16) oraz b—zupelny (Twierdzenie 1.21) w tych punktach.
OJ

DowOD TWIERDZENIA 2.8. Pokazemy, ze dlugo$é krzywej a wzgledem metryki
Bergmana (p jest skonczona. W obszarach ograniczonych wartoéci jadra Bergmana
sa oddzielone od zera (wynika to z Obserwacji 1.1(e),(j)). Ze wzgledu na ten fakt oraz
na Obserwacje 1.2(e), wystarczy zatem udowodnié, ze

/1 Mp(a(t); &/ (1)) dt < oo. (2.17)
0

Dzieki wlasnoéci lokalizacji (Twierdzenie 1.27 i Obserwacja 1.2(f)), mozemy zalozy¢
bez straty ogélnosci (podobnie jak to uzasadnialiémy w dowodzie Twierdzenia 2.3), ze
zo = 0 oraz

A(0, 1)\A( 9) c D c A®0,1). (2.18)

Wprowadzmy nastepujace oznaczenia
Ko :=A(0,1)\ A(0,1 — &),
K;:=A;(00\D, j=>1,

U E.UAe),
k=j+1

WV
—_

gdzie g < i jest pewng ustalong liczbg dodatnig. State €; € (O, 2{%) wybieramy tak

mate, aby
oo

= <2 ! (2.19)
—logcap L, Nt — log cap K}, '
(mozemy tak uczynié¢ ze wzgledu na Twierdzenie D.23(d),(f)).
Zauwazmy, ze z zalozenia yp(0) < +oo i Obserwacji 2.2(c) wynika, ze
. 2.20
; \/—logcapKk < oo (2.20)

Zdefiniujmy pomocnicze obszary
D;:=(DUA(0,&;)) NA(0,1—¢g). j>1

Powigkszajac odpowiednio zbiory K, j > 1, mozemy zalozy¢ bez straty ogélnosci, dzieki

wlasnosciom pojemnosci logarytmiczne;j (Tvv1erdzen1e D.23(c)), ze obszary C\ K;,j > 1

sg regularne, a brzeg kazdego ze zbioréw D; jest sumg skoniczonej liczby tukéw Jordana.
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Niech B C C bedzie dowolnym zbiorem zwartym takim, ze C\ B jest obszarem regu-
larnym oraz 0 < cap B < 1. Oznaczmy przez pp := p,, jego potencjal logarytmiczny
(zob. Dodatek). Wybierzmy funkcje x5 € C*(R, [0, 1]) takie, ze

1, gdy t<logcapB

t) = 1 2.21
xa(t) 0, gdy t=> §logcapB ( )

oraz

4
IXB(1)] <

< ——F, teR. 2.22
—logcap B ( )

Niech ¢p := xpopp. Jezeli B jest polarny lub pusty, to przyjmijmy umowe ¢p = 0.
Dzigki twierdzeniu Frostmana (Twierdzenie D.27) ¢ = 1 na B (o ile B nie jest polarny
lub pusty). Ponadto,

0 4
X5 (PB(2)) pgz(z) < _IL];BC(:;’B,

6903
‘ 5z )

zeD. (2.23)

Ustalmy dodatkowo funkcje po € C*(R, [0,1]) taka, Zze ¢9 = 1 na zbiorze Ko oraz
supp o C A(0,14¢9) \ A(0,1 — 2¢g).
Potézmy
Pj i=max{po, Pk, , - - - PK; s PL, }- (2.24)

Mamy v; = 1 na 0D;. Pewne dodatkowe wlasnosci, ktérych uzyjemy w dalszej czesci
dowodu, zostaly zebrane w ponizszym lemacie, ktéry zostanie wykazany pdzniej.

LEMAT 2.11. Niech D C C spelnia warunek (2.18) oraz niech « bedzie krzywq spel-
niajgcq warunki (2.4) i (2.8) dla zo =0 € 9D.

Wtedy istnieje Ng € N oraz state m, M > 0 takie, zZe dla dowolnych j > Ng, N € N
oraz x € An(0) N ([0, 1]) zachodzi

(a) supp @, C Aj—1(0) U A;(0) U A;41(0), suppor, C UgZ; As(0);
(b) dist (z,supp ¢k, Usuppyr;) > 5%, gdy j > N
oraz dist (z,supp¢r;) > 57, gdyj < N;
OpK M opr ; o0 M
(© [|=5z*p < g, ==y S 2 et

Oszacujemy funkcje Mp(-;1) wzdhuz krzywej a.

Ustalmy N > 2 oraz ¢ € Ay_1(0) N ([0, 1]). Wezmy dowolng funkcje f € L3 (D),
f#0.

Ze wzoru catkowego Cauchy’ego oraz ze wzoru Greena dla funkcji lipschitzowskich
(Twierdzenie D.36) dostajemy, ze:

/ 1 z)dz
O
_ b f(2)on(2)dz| 1 f(2) 0w o
_271' ADN (Z—.TE)Q 7_‘_/DN(Z_:E)2 62()d£()




Nastepnie stosujemy nierownosé Cauchy’ego-Schwarza oraz Lemat 2.7:

£/ ()]
1 |/ (2)| 8('00 ( > f(2)| |0vNn ’dCQ
S /S“pp“’o |z == 82 /A ;(0) /u A0/ |z — x| 0% ( ) (2)

5800

—||f||D sup

D ZE€supp @o |z -z
'3901( 00K,

L (2 ]

e[ ([0 ) 280 ) | 2oL ) a2

U A4,(0) |z — z?
s=N

‘ 2

N
<alflo(1+3 _suw

=1 #€suPP ¥x; z—z|?

1 1

aSOKj
0z

aSOLN
0z

+ sup 5
D  ZE€Supp Ly |z — |

)

M = 92N M
<C 1+ )
51 z ey APV v )

Statle m, M pochodza z Lematu 2.11 i zaleza od zbioru D, natomiast stala C7; > 0
jedynie od wyboru funkcji ¢q.
Mamy wiec nastepujaca nieréwnosé dla z € Ay _1(0) N ([0, 1)):

Mp (; (2.25)

= 1
<Col 1+ + 22N ),
2( Z,/ logcapK j:%lw/—logcapf(j

gdzie Cy > 0 jest pewng uniwersalna stata zalezna tylko od obszaru D.
Szacujac ponizsza calke, wykorzystujemy warunek (2.9):

/ Mp (a(t); o/ (t)) dt

( sup Mb@ﬂ)/ |w@nﬁ)
) \zeAn(0)Na([0,1]) a-1(An(0))

oo

> 1
R +2%
2 Z (QN oN Z /- logcapK j:zN:Jrl \/—logcaij)

2

<

Q

[e’e} oo 1 2_7 ° J ! N 1
<02R+Z(Z‘2—N)\/W+;<;2 )\/W

< CyR+ -
2 Z\/—logcapK Z\/ logcapK

Warunek (2.20) konczy dowdd. O
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DoOwOD PRZYKEADU 2.9. Sprawdzmy, ze krzywa « spelnia zadane wlasnosci. Wa-
runki (2.47) i (2.9) zachodza w oczywisty sposéb. Wezmy zatem dowolny punkt zq €
(O, i) i niech x; bedzie punktem z przedziatu (0, z() takim, ze

dist (:Eo,aD) = |I‘() - (1‘1 + ZRl‘(ll)| > RIECIL

Wystarczy teraz pokazac, ze Rx{ > %xﬁ dla zy dostatecznie bliskich 0. Zwréémy uwage,
ze z elementarnych wtasnosci wykresu funkcji rézniczkowalnej, mamy

Stad wynika, ze iloraz %11 dazy do 1, gdy o — 0, a to gwarantuje juz potrzebna
nieré6wnosc.
Pokazemy teraz, ze Yp(0) < 400. Zauwazmy, ze dla j > 2

2P 1
Agi1(0)U A (0\D C | Awjn, ),
k=0
a dla pozostatych [ > 2 réznych od qj i qj — 1
AZ(O) \ D=g.

Podobnie jak w Przykladzie 2.7, dzieki Obserwacji 2.2(c) oraz Twierdzeniu D.23(d)
mamy

o0 o0

~ 2! 247
p(0) <4 <8

s \/—logcap (A(0)\D) = \/ logcap( o B (win )

. o)
qj
8222 2(2q+p)j] Z < +00.
J :

Udowodnijmy w koncu zupetnosé¢ obszaru D. Analogicznie jak w Przyktadzie 2.7,
pokazemy, ze dla dowolnego punktu z o module réwnym (dla dostatecznie duzych
Jj) zachodzi

QTJ

~9PJ
kp(z) > C’j—4. (2.26)
Gwarantuje to, ze nie istnieje krzywa spelniajaca warunek (2.4) dla punktu 0, wzdluz
ktorej jadro Bergmana byloby ograniczone. Na podstawie Twierdzenia 2.4 dostajemy
b—zupetnos¢ D w punkcie 0. Zupelnos¢ w pozostatych punktach gwarantuje Twierdze-
nie 1.21 (poprzez Twierdzenie D.25).

Ustalmy 7 > 2 i wezmy punkt z o module réwnym 2?. Dla ,sasiednich” punktéw
Lj,k>Tjk+1 MAMY:

2 1_ 2

245 9pi  2ta)i’
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7, geometrii zbioru D wynika wiec, ze

R 27 8

dist (z,0D) < Saja + 5+0)7 < 2(p+a)j’

dla j > jo. Takie jp € N istnieje, poniewaz qa > p + q.

W konsekwencji, dla odpovviednio duzego j (mozna zaltozyé, ze dla j > jo) i dowol-
nego z € D o module réwnym 27] zbibr A(p+q)] 5(2) \ D zawiera co najmniej jedno
kolo A(zj,r;) dla pewnego k € {0,...,2P — 1}. Zatem z Twierdzenia 1.31(a) oraz
Obserwacji 1.29(b) mamy

O 22!
kp(z) = C —
(2) 2 Crp(= 8 ; — log cap Al( )\D)
O 22(p+4¢)j—10 C 92(p+9)i-10 o 9pj
— > 7  _ - .2
8 —log cap (A(p+q)j_5(z) \ D) 8 —logr; 213 44
dla punktéw z € D o module réwnym QTJ (j > jo)- O

DowOD LEMATU 2.11. Z definicji funkcji xp oraz z definicji potencjatu (zob. Defi-
nicja D.21) wynika, ze dla zbioru B takiego, ze 0 < cap B < 1, zachodzi

supppp C {z € C: pp(z) < logcapB}C{zE(C dist (z, B) < \/cap B}. (2.27)

Zatem, aby inkluzje w punkcie (a) zachodzily, wystarczy pokazaé, ze y/cap K; < ﬁ
oraz y/cap L; < 2]% dla dostatecznie duzych j. Istotnie, z warunkéw (2.20) oraz (2.19)
wynika, ze dla dowolnego § > 0 istnieje Ny takie, ze dla j > Ny zachodzi

K, -1 52
ca .
P log cap K < Qajta
—1 ~1 = 62 52
Li< — <2 — <2 < —=—.
cap L log cap Lj kzj;_l log cap K, kzj;_l 92k+4 922j+4

Ustalmy N € N oraz punkt z € Ay (0)Na(]0,1)). Wezmy dowolne j > max{N, Ny}.
Wtedy, korzystajac z udowodnionych wyzej oszacowan, dostajemy

dist (x, supp ¢x; Usupp ¢, ) > dist (z,0D U A(0,¢5)) — v/cap Kj — \/cap L;

20 0 0 20
27+2 > gN+1  9N+2  9N+3°

0
Z Nyt ST
Przypomnijmy, ze w definicji zbioru L; wybieralismy e; < 2]+1 Teraz biorac 6 < 3 ,
dostaniemy nieréwnosé

. 0
dist (z, supp ¢x; Usupp ¢r;) > ON+3"
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Podobnie dla j = N — 2, N — 1, N (pamietajmy, ze j > Np):

. . 0 )
dist (z,supp ¢k, ) > dist (x,0D) — /cap K; > SNTT 3513

i kltadac 6 < % otrzymujemy:

. 0
dist (z, supp vx;) > YRR

Dla j < N — 3 mamy, dzieki udowodnionemu juz punktowi (a),

. . 1 1 1 1 1 0
dist (z, supp ¢k, ) > dist (z, A;,1(0)) > 273 T oW > 5772 ~ 279 = 3773 2 5543

Wystarczy przyja¢ m = 514.

Z warunku (2.23) wynika, ze

< 4| fellp

dvp
5  —logcap B’

0z

gdzie B = K; lub B = Lj, j > 1. Wystarczy teraz zastosowa¢ Lemat 1.35 (zob.
Uwaga 1.36). O
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ROZDZIAL 1III

OBSZARY TYPU ZALCMANA

W pracy [Zal 1969] zostal wprowadzony specjalny typ obszaréw na plaszczyznie
zespolonej (obszary typu (L)), ktérych brzeg ma nieskoniczenie wiele sktadowych spdj-
nych.

DEFINICJA 3.1. Obszarami typu (L) w sensie Zalcmana lub, krocej, obszarami typu
Zalemana albo obszarami typu (L) bedziemy nazywaé obszary postaci:

D :=A(0,1) \ ( A(zg, 1) U {0}), (3.1)

k=1

gdzie xp > xgp4+1 > 0, limg 4z, =0, Z(.I‘k,Tk) C A(O, 1) oraz Z(xk,rk) QZ(IZ,W) =
o, dlak,l>1k+lL

Obszary te byly réwniez badane w kontekscie zupelnosci w sensie Bergmana (zob.
[Ohs 1993], [Chen 1999], [Chen 2001]). Ohsawa ([Ohs 1993]) scharakteryzowal hiper-
wypukle obszary typu (L), ktére spelniaja warunek (3.2), i podal przyktad niehiper-
wypuklego i wyczerpywalnego obszaru tego typu. Chen wskazal przykltad obszaru typu
(L), ktéry jest b—zupelny, ale nie hiperwypukly ([Chen 1999]). Zwonek ([Zwo 2001],
zob. Twierdzenie 1.12) skonstruowal inny przyktad obszaru z brzegiem nieskonczenie
sp6jnym 7, ktéry jest b-zupelny, ale nie wyczerpywalny — byl to jednoczeénie kontr-
przyktad do hipotezy Kobayashiego o twierdzeniu odwrotnym do 1.9.

Gléwng motywacja do badania tych obszaréw bylo dla nas nastepujace pytanie
Pfluga ([Pfl 2000]):

Ktére obszary typu (L), spelniajace warunek

1

L

sa b—zupelne?
Przedstawimy pelna charakteryzacje wyczerpywalnosci oraz b—zupelnosci (Twierdze-
nie 3.7) dla obszaréw typu (L) w sensie Zalcmana, ktére spelniaja warunek

Tk+1
Tk

istnieje liczba © € (0,1) taka, ze < © dla kazdego k > 1. (3.3)

Beda to wnioski z rezultatow z poprzedniego rozdziatu lub ze znanych wcze$niej wyni-
kéw (por. [Juc 2004]). W szczegdlnosei, rozwigzemy problem postawiony przez Pfluga.

Zauwazmy, ze w przypadku obszaréw typu (L) istotne bedzie dla nas zachowanie sie
funkcji Bergmana jedynie w otoczeniu punktu 0.

(T)Nie jest to obszar typu (L) w rozumieniu Definicji 3.1

38



OBSERWACJA 3.2. Niech D bedzie obszarem typu (L) oraz niech zo € 0D, zy # 0.
Wtedy D jest wyczerpywalny i b—zupelny w punkcie 2.

DowOD. Punkt zp € 9D \ {0} lezy na pewnym okregu, ktéry jest sktadowa spdjna
0D, wiec z Twierdzenia D.25 wynika, ze jest punktem regularnym. Z Twierdzenia 1.16

mamy zatem, ze
lim kp(z) = 400,

D3>z—2zg

a Twierdzenie 1.21 daje nam b—zupelnos¢ obszaru D w zg. ([l

WNIOSEK 3.3. Niech D bedzie obszarem typu (L). Witedy:
(a) D jest wyczerpywalny wtedy i tylko wtedy, gdy

Fp(0) = +oc. (3.5)

DowOD.

(a). Bezposrednio z definicji funkeji vp (1.11) wynika, ze vp jest rosnaca na odcinku
[—%,0]. Z tego oraz z pélciagloéci z dolu (Obserwacja 1.29(a)) mozna wywnioskowad,
ze warunek (3.4) jest réwnowazny warunkowi

li — foo0.
DngOVD(Z) +00

Twierdzenie 1.30 koniczy dowdd.

(b). Widaé, ze obszar D spelnia zalozenia (2.8) i (2.9) w Twierdzeniu 2.8. Fakt, ze
D jest b—zupelny w 0, oznacza tym samym, ze zachodzi warunek (3.5).

Implikacja odwrotna wynika bezposrednio z Wniosku 2.6. OJ

Dla obszaréw typu (L) w sensie Zalcmana (zdefiniowanych wzorem (3.1)) rozwazmy
nastepujace warunki:

= 1
Z —x2logry +oo, (36)

k=
i ! i~ (3.7)
1 T\ — log Tk

LEMAT 3.4. Niech D C C bedzie obszarem typu (L). Wtedy zachodzqg nastepujgce
implikacje:

(3.4) = (3.6), (3.5) = (3.7).
Ponadto, jesli zachodzi warunek (3.3), to réwniez

(3.6) = (3.4) oraz (3.7) = (3.5).
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DowOD. Przeprowadzimy dowdd jednoczesnie dla implikacji (3.4) = (3.6) oraz
(3.5) = (3.7). Polézmy

dé
A= .
/0 §o+1( —logcap (A(0,6) \ D))b7 (38)

Ll

gdziea=1ib= 3 (wtedy A=7p(0)) alboa=21ib=1 (wtedy A =~p(0)).®®)
Zalozmy, ze szereg
3.9
;::1 T (— log )b (3.9)
jest zbiezny. Dla dostatecznie duzych k£ mamy wtedy

1
e < Zxk

Poniewaz nie wplynie to na zbieznos¢ szeregu, mozemy zalozyé¢, ze nieréwnosé ta za-
chodzi dla wszystkich k£ > 1

7 geometrii zbioru D i z powyzszej nieréwnoéci wynika, ze dowolne koto A(zy, 1),
k > 1 przecina jednoczesnie co najwyzej dwa zbiory A;(0) i A;11(0) dla pewnego j > 0.
Ponadto, zachodzi wtedy

< =
xk\zj

oraz, dzigki Twierdzeniu D.23(d),

1 < Z 1 '
—logcap (4;(z) \ D) s —log 7y,
A(aﬁk,’l“k)ﬂAj (0)#@

Korzystajac z tego, co zauvvaZylis’.my powyzej, z subaddytywnosci funkcji Ry > x —
VZ (w przypadku, gdy b = 1) oraz z Obserwacji 2.2(c) i 1.29(b), dostajemy

oo 2(1]

A<82

<8 Z 9aj Z - -
b _ b
—logcap (4,(z) \ D)) =2 hen (—logrk)
Z(.’Itk,’l’k)ﬂA'(O)#@

1
S8 Z Z zf(—logry)? s16: Z log ok

keN:
A(mk,rk)ﬂA (0)?5@

(3.10)

czyli A < +00. Pierwsza cze$¢ lematu zostala zatem udowodniona.

(8) Oczywiscie, dowéd jest prawdziwy dla kazdego a > 0. Nie potrzebujemy go jednak tutaj w pelnej
ogdélnosci. W dalszej czesci rozdzialu wykorzystamy jeszcze jedynie fragment ponizszego rozumowania
dlaa=2ib=1.
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Oszacujemy teraz catke (3.8) od dotu, aby pokazaé¢ implikacje odwrotne. Zal6ézmy,
bez utraty ogélnoci, ze z1 < § i zauwazmy, ze A(0,8)\D D A(zp41—37k41, 376+1) dla
8 € [5rr 3%)- Stosujac Twierdzenie D.23(a),(f), a nastepnie warunek (3.3), dostajemy

A>Z/ do

s 3941 (—logcap (A(0,6) \ D))"

1 1 1 1 1-00 & 1
>33 (55 ety ® e

7
a = \Thy,y —log 57k+1) — log k)

Pojawienie sie statej 2% w ostatnim wyrazeniu wynika z nieréwnosci %rk >ridlak>1
(mamy 7, < 1 < i, k > 1). Lemat zostal wiec udowodniony. O

W powyzszym lemacie warunek (3.3) jest konieczny. Pokazuja to ponizsze przyktady.

PrRzYKrAD 3.5. Niech

D :=A(0,1)\ ( [j Z(%,m) U {0}>,
k=2

gdzie r, > 0 sq takie, ze —logry, = k*. Wtedy D spelnia warunek (3.7), ale nie spelnia
(3.5).

DowOD. Latwo widaé, ze

1 k
;xk\/—logm N I;ﬁ - e

Dla dowolnego j > 1 zachodzi

2711
A;(0 )\DCkLgJA Tk
Gdy zastosujemy Twierdzenie D.33(d), dostaniemy
1 20 12
S —— ()\D)<]§2:j—10grk<(2]+1)27]<2 j=1

Ostatecznie, z Obserwacji 2.2(c) mamy

p(0) <4) <4V2)  —— < +oo.
7 j=2 \/—logcap( ;(0 )\D) =2 V2

Aby skonstruowaé kontrprzyklad do implikacji (3.6) = (3.4), potrzebne jest nieco
subtelniejsze rozumowanie.
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PRZYKLAD 3.6. Niech
oo J
D :=A(0,1)\ ( U U A, r) U {0}),

J=2k=
gdzie 23% <xjp < %,rj >0,(j=22,k=1,...,7) sq takie, ze

Wtedy D spelnia warunek (3.6), ale nie spetnia (3.4).

DowOD. Zauwazmy, ze taki zbiér da sie skonstruowaé zgodnie z warunkami (3.1).
Trzeba wziaé 5, € (57, 57) (7 = 2,k =1,...,7) takie, ze

1 3
Tj1 = ﬁ + 5?“3',
illjvk—ilj'j,k_l :3?“j, kZQ,...,j.
Mozna to zrobié¢, poniewaz
. . _92i ;2 1 .
3jr; = 3je =/ ST j=2.
Sprawdzmy, ze zachodzi warunek (3.6):
o0 J o0 2
1 247
DD T P g =t
=i 7 . logr; = 227

Srednica zbioru A;(0)\ D (j > 2) jest mniejsza niz 3jr;. Dlatego, stosujac Twier-
dzenie D.23(d), dostajemy nast@pumcq nieréwnos¢

1 J :
357 < log 3475 J 2 27
cap (Aj (O)\D) Tj

ktora prowadzi do oszacowania:
1 1 2

—logcap (4;(0)\ D) (; —1)log3j —logr; 227 52
W konsekwencji, dzieki Obserwacji 1. 29(b)

=2
82 D)<8j2_:2j—2<+00,

czyli warunek (3.4) nie Jest spetniony. O

.
WV
[\

— log cap

Ponizsze twierdzenie jest wnioskiem z wynikéw z poprzedniego rozdziatu, z Twier-
dzenia 1.30 (zob. réwniez [Zwo 2001], [Juc 2004]) oraz z Kryterium Wienera (Twier-
dzenie D.26).

Charakteryzuje ono obszary typu (L) w sensie Zalcmana ze wzgledu na wlasnosci
hiperwypuktlosci (por. [Ohs 1993]), wyczerpywalnosci oraz b—zupelnosci.
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TWIERDZENIE 3.7 (por. [Juc 2004]). Niech D C C bedzie obszarem typu (L) spel-
niajgcym warunek (3.3). Wtedy:

(a) D jest wyczerpywalny wtedy i tylko wtedy, gdy

-1
— = +00.
; xi log .

(b) D jest b—zupelny wtedy i tylko wtedy, gdy

oo
= +o00.
; T\ — log TR

(¢c) Jesli ponadto istnieje © > 0 takie, ze

o <L k>, (3.11)
Tk

to D jest hiperwypukly wtedy 1 tylko wtedy, gdy

Z logzy
logry

DowOD. Punkty (a) i (b) wynikaja bezposrednio z Wniosku 3.3 i Lematu 3.4. Po-
zostaje udowodnié¢ punkt (c) (por. [Ohs 1993]).

Z wtasnosci zespolonej i klasycznej funkcji Greena wynika, ze hiperwypuklos$é jest
réwnowazna regularnosci obszaru D (zob. Twierdzenie D.29 i Twierdzenie D.31). Po-
niewaz wiemy, ze wszystkie punkty brzegowe zbioru D oprécz co najwyzej punktu 0 sg
regularne (Twierdzenie D.25), wystarczy wiec zastosowaé kryterium Wienera (Twier-
dzenie D.26) do 0. Polézmy pj := xj. Dzigki warunkom (3.3) i (3.11) mamy

0<o < coc1, k=1,
Pk

zatem zalozenia kryterium Wienera, dotyczace liczb pg, sa spelnione. Zauwazmy, ze dla
zbioru

Fk:{ZGCZpk+1<|Z|<pk}\D, k>1,
zachodza inkluzje

1 1 —_ _
A(Q?k — irk, 577{) C Fp. C A(xk+1,rk+1) U A(:IJk,Tk), k> 1.

Dzigki wlasno$ciom pojemnosci (Twierdzenie D.23(a),(d),(f)) prowadza one do naste-
pujacych nieréwnosci:
1 1 1 1
<

< + 7
—logir, = —logcapF — —logrgyr  —logry
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Mnozac wszystkie wyrazy powyzej przez — log xy, i sumujac po k, wnioskujemy (stosujac

. . . o0 log pk o0 log a;k . ’ .
ponownie warunek (3.11)), Ze szeregi 3 ;~ 1 5 s Oraz ) 4 100w sa jednoczesnie
zbiezne albo jednoczes$nie rozbiezne. Kryterium Wienera konczy dowdd. O

Twierdzenie 3.7 daje odpowiedZ na problem postawiony przez Pfluga [Pfl 2000],
ktory cytowaliSmy na poczatku rozdziatu. Daje on réwniez mozliwosé wyboru stosun-
kowo tatwych przyktadow obszaréw wyczerpywalnych niehiperwypuktych i zupetnych
niewyczerpywalnych (latwiejszych niz w [Zwo 2001], por. przypis do Twierdzenia 1.12).

Jedynie dla porzadku przedstawimy wniosek z tego twierdzenia, dotyczacy obszarow

speliajacych warunek
1

ﬂﬁk:z—k,

k>l (3.2)

WNI0SEK 3.8. Niech D C C bedzie obszarem typu (L) spelniajgcym warunek (3.2).
Wiedy:

(a) D jest hiperwypukly wtedy i tylko wtedy, gdy

> k
> g =T
kzl_ogrk

(b) D jest wyczerpywalny wtedy i tylko wtedy, gdy

o° 22k

S
k=1 08Tk

(¢) D jest b—zupelny wtedy i tylko wtedy, gdy
2 e

Whnioskiem z rozwazan z poprzedniego rozdzialu jest réwniez ponizszy lemat, doty-
czacy zachowania sie metryki Bergmana (5p w obszarach typu (L) (por. Corollary 5 w
[Pfl-Zwo 2003]). Wiaze sie to z dyskusja na temat, kiedy

Dalzlglap Bp(2) = +oo
Problem ten nie jest dotychczas rozwigzany, nawet dla obszaréw typu (L) w sensie
Zalcmana speliajacych warunek (3.2) (zob. [Jar—Pfl 2004], Open problems).

LEMAT 3.9. Niech D C C bedzie obszarem typu (L). Wtedy:

(a)

oo

< 400 = limsup Bp(z) < +o0.

1
kz::l LL‘% vV — 10g Tk 0>x—0

(b) Jesli dodatkowo D spelnia warunek (3.3), to

1
limsup fp(z) < +00 = limsup

0>z—0 k—oo Tiy/—logry
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DowoOD. (a). Jadro Bergmana kp jest oddzielone od zera na zbiorze D (wynika to
z Obserwacji 1.1(e),(j)), wiec wystarczy pokazaé (dzieki Obserwacji 1.2(e)), ze

limsup Mp(z;1) < 4o0.
0>z—0

Z oszacowania (2.25) w dowodzie Twierdzenia 2.8 (zbiér D spelnia zalozenia tego twier-
dzenia) wynika, ze

= 227 1
MD(a;;1)<c(1+]Z:\/ — ()\D)) v € (=7.0),

gdzie C' > 0 jest pewng stalg zalezna jedynie od zbioru D.
Wystarczy zatem pokazacd, ze zbieznos¢ szeregu

2:1 xi\/— log 74,

implikuje zbieznos¢ szeregu

oo

2%
;\/ logcap( ()\D)

Wynika to bezposrednio z ciagu nier6wnoéci (3.10) w dowodzie Lematu 3.4. Zauwazmy,
ze pierwsza czes¢ dowodu Lematu 3.4 pozostaje prawdziwa réwniez dla a =21 b = %
Ponadto, nie musimy odwotywac sie do Obserwacji 2.2, poniewaz nie korzystamy nigdzie
z nieréwnosci, w ktéra bytaby uwiktana catka (3.8).

(b). Z zalozenia oraz z ciaglosci metryki Bergmana Sp wynika, Ze jest ona ogra-
niczona na odcinku (—i,O). Oznacza to, ze dlugo$é¢ tego odcinka wzgledem metryki
Bergmana jest skonczona. Stad mamy, ze D nie jest b—zupelny w punkcie 0 i w rezulta-
cie yp(0) < 400 (Wniosek 3.3). Tym samym, zalozenia Lematu 2.5 sa spelnione: jako
krzywa o przyjmujemy parametryzacje odcinka (—— O) o stalej pochodnej; warunek
(2.6) wynika z faktu, ze 3p(0) < 4o0; zalozenie A(0, 1)\ A(0, 55) C D nie wplywa na
zachowanie si¢ metryki Sp w otoczeniu 0 (T Wierdzenie 1.5).

Mozemy zatem wykorzystaé¢ oszacowanie (2.13):

2% 1 1
Mp(z:1 ze —.—,—.—},;9, 3.12
) 2 e L\ D)’ T (312
gdzie stata C' > 0 zalezy tylko od zbioru D.
Dodatkowo, jadro Bergmana kp jest ograniczone na odcinku ( — %,0) — aby to

pokazaé, wystarczy np. powtérzy¢é Krok 2 z dowodu Twierdzenia 2.4.
Laczac powyzsze dwa fakty i Obserwacje 1.2(e), dostajemy, ze

1 2
im sup < +00.
j—oo /—logcap (4;(0) \ D)
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Pokazaliémy wyzej, ze p(0) < +oo, co oznacza, ze szereg w warunku (3.7) jest
zbiezny (Lemat 3.4). W takim razie, dla dostatecznie duzych liczb naturalnych k, mamy
T < ixk i inkluzje

A(Ik, ’I“k) C AJ(O) U Aj+1(0) \ D,

dla pewnego j = j(k) > 1. Wynika stad (i z Twierdzenia D.23(d)), ze

1
li —_
lﬂs;l,p z3/—logry,
92 (k)+2 92 (k)+4
< lim sup ( + )
oot \ /= Togcap (A, 0\ D) /~Togeap (A; 6y 11(0) \ D)
92j+2
< 2limsup < 00,
j—oo y/—logcap (4;(0)\ D)
co konczy dowod. 0

Postepujac analogicznie jak w dowodzie Lematu 3.9(b) mozna udowodnié¢ nawet wie-
cej, dzieki nieréwnosci (3.12) (dla punktéw x niekoniecznie rzeczywistych):

OBSERWACJA 3.10. Niech D C C bedzie obszarem typu (L), spelniajgcym warunek
(3.3). Jesli
li 2
1m = 400,
i—oe \/—logcap (4;(0) \ D)

to

DlaleLoMD(Z 1) =400 oraz 0>hmnloﬁD( x) = +00.

Zbiezno$¢ szeregu w Lemacie 3.9(a) implikuje fakt, ze obszar D nie jest b—zupelny
w 0. Mozna w takim razie postawi¢ pytanie, czy stad, ze

Oigrgoﬁp( T) = +00

wynika juz zupelnosé¢ obszaru D w sensie Bergmana. Ponizszy przykitad pokazuje, ze
nie musi tak by¢.

PrzykrAD 3.11. Niech

D= (L_J <2k,rk>u{0}>

gdzie r, > 0 sq takie, e —logry, = k*2%F,
Wtedy

li —
oJim Gp () = +o0,

ale D nie jest b—zupelny w punkcie 0.

DowOD. Obszar D jest zupelny w sensie Bergmana, poniewaz (Wniosek 3.8(c))

(e @] [oe) 1
; \/—logrk ;ﬁ
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7, drugiej strony,

225 92j 92j+1

> > =1
V108@p (LOND) ~ [“logly, | I¥

bo A5 — 47;,47;) C A;(0) \ D. Z Obserwacji 3.10 dostajemy, ze

0>hxnio B () = Foo.
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ROZDZIAL 1V

ZUPEELNOSC OBSZAROW REINHARDTA

Jednym ze zbioréw podawanych jako przyktad pseudowypuktego ograniczonego ob-
szaru niehiperwypuktego, ale b—zupelnego jest ponizszy obszar Reinhardta, skonstru-
owany przez Herborta ([Her 1999)):

D := {(z,w) cC?: |uwf*< e_ﬁ, |z| < 1}.

Problem, ktére pseudowypukte ograniczone obszary Reinhardta w C" sa b—zupelne
zostal calkowicie rozwiazany przez Zwonka ([Zwo 1999a]). Wynik ten (geometryczna
charakteryzacje tych obszaréw) przytoczyliémy w Rozdziale I (Twierdzenie 1.43). Wia-
domo réwniez, ktére obszary Reinhardta sa hiperwypukte ([Zwo 2000b], [Zwo 2000a],
zob. Twierdzenie 1.42).

Kolejnym, pojawiajacym sie w naturalny sposéb, jest problem postawiony przez
Jarnickiego i Pfluga ([Jar—Pfl 2004]):

Poda¢ charakteryzacje wszystkich nieograniczonych pseudowypuktych ob-
szarow Reinhardta, ktére sg b—zupelne.

Przedstawimy jego czedciowe rozwiazanie — analogon Twierdzenia 1.43 dla nieogra-
niczonych pseudowypuktych obszaréw Reinhardta w C? (Twierdzenie 4.1) oraz dla pseu-
dowypuklych c-hiperbolicznych obszaréw Reinhardta (Twierdzenie 4.2).

Przypomnijmy najpierw definicje stozkéw maksymalnych, ktore podaliémy w Roz-
dziale I:

C(D):={veR": a+Ryv ClogD},

¢(D) := {v € R" : istnieje . li+m exp(a + tv) € D},

¢'(D) := &(D) \ €(D).
Definicje nie zalezg od punktu a € log D, poniewaz, zgodnie z Twierdzeniem 1.41, log D
jest wypukty.

TWIERDZENIE 4.1. Niech D C C? bedzie pseudowypuklym obszarem Reinhardta
(niekoniecznie ograniczonym) takim, ze log D nie zawiera linii prostych. Wtedy na-
stepujgce warunki sg rownowazne:

(a) D jest b—zupelny.

(b) ¢'(D)NQ? = 2.

Whioskiem z juz znanych twierdzen jest nastepujacy rezultat dotyczacy c—hiperbo-
licznych obszaréw Reinhardta.
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TWIERDZENIE 4.2. Niech D C C" bedzie pseudowypuktym c—hiperbolicznym obsza-
rem Reinhardta. Wtedy nastepujace warunki sqg rownowazne:

(a) D jest b—zupelny.

(b) &(D)NQ" = 2.

W obszarach nieograniczonych pojawia si¢ problem istnienia metryki Bergmana, a
nawet dodatnioéci jadra Bergmana. Pokazemy w Lemacie 4.8, ze warunek (b) z Twier-
dzenia 4.1 implikuje S—hiperboliczno$¢ obszaru D (tzn. jadro Bergmana kp jest do-
datnie i Sp jest metryka). W przypadku Twierdzenia 4.2 wynika to z dowodu (zob.
nizej).

Mozna zadaé sobie pytanie, czy da sie w tym przypadku wykorzysta¢ zacytowane
przez nas w Rozdziale I, Twierdzenie 1.24 ([Chen—Zhang 2002]) dotyczace zupelnosci
obszaréw nieograniczonych.

Okazuje sie, ze nie mozna go zastosowaé do nieograniczonych obszaréw Reinhardta.

Pokazuje to ponizszy przyktad.

PRZYKEAD 4.3. Niech
D := {(21,22) € C*: |25| < min{l,exp(—|z1]| + 1)} }.

Wtedy D jest b—zupelny, ale nie sqg spetnione zatozenia Twierdzenia 1.24.

DowOD. Latwo zauwazyé, ze log D = {(xl,xg) € R?: x5 < min{0, —expx; + 1}}
Zatem €(D) = €(D) = R2? oraz ¢(D) = @. Z Twierdzenia 4.1 wynika, ze D jest
b—zupelny.

Niech gp(w, -) bedzie funkcjg Greena obszaru D z biegunem w punkcie w € D (zob.
Dodatek). Wtedy funkcja z — gp(w, (z,0)) jest ograniczona od géry i subharmoniczna
na C (Twierdzenie D.31(a)), a zatem musi by¢ stala (Twierdzenie D.17(c)). Oznacza
to, ze warunek (1.9) z zalozenia Twierdzenia 1.24 nie jest spelniony.(?) O

Zanim przystapimy do dowoddéw, przypomnijmy kilka definicji i spostrzezen z Roz-
dziatu 1.3.
Dla obszaru Reinhardta D C C™ zdefiniujmy:
E=ED):={z*ec L}(D): a € Z"},
A=AD):={aeZ": z* € L; (D)},
J(D):={j€{l,...,n}: V;ND # o}

Bedziemy wykorzystywaé dwie ponizsze obserwacje (Lemat 1.46 i Obserwacja 1.48):

LEMAT 4.4 ([Zwo 1999a], [Zwo 2000a]). Niech D C C™ bedzie pseudowypuklym ob-
szarem Reinhardta oraz niech o € Z". Wtedy

2* € L3(D) < VYovece&D)\{0}: (a+1,v) <0.

(9 Mozna pokazaé nawet wiecej dla obszaru D — w klasie pseudowypuklych obszaréw Reinhardta
obszary hiperwypukle musza koniecznie byé ograniczone ([Zwo 2000b], [Zwo 2000a], zob. Twierdze-
nie 1.42), a wiec D z Przykladu 4.3 nie jest hiperwypuktly.
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OBSERWACJA 4.5 (zob. Obserwacja 1.48). Niech D C C™ bedzie pseudowypukiym
obszarem Reinhardta. Zbiér log D zawiera linie prostq wtedy i tylko wtedy, gdy L3 (D) =
{0}.

W szczegdlnosci, jesli log D nie zawiera Zadnej linii prostej, to zbiory E(D) i A(D)
5q niepuste.

W zwiazku z powyzsza obserwacja, zatozenie, ze log D nie zawiera linii prostych,
pojawiajace si¢ w Twierdzeniu 4.1 oraz w nastepnych wynikach nie jest istotnym ogra-
niczeniem.

Dla A = [Ai]jykzl,_”’n € Z"*", zdefiniujmy odwzorowanie:
1 n
Dalz):=(2,...,24),

dla takich z € C", ze z, # 0, gdy Ai < 0 dla pewnego j = 1,...,n. (Oznaczamy

Al A Al Ad 3 . . . A
24 = (21,20 "), A7 jest j—tym wierszem macierzy A).

Beda nas interesowaé tylko takie odwzorowania ® 4, ktére sg biholomorfizmami na
C7, tzn. spetniajace warunek |det A| = 1 (lub, réwnowaznie A~! € Z"*" oraz det A #
0) (zob. Obserwacja 1.49).

DowOD TWIERDZENIA 4.2. 7 Twierdzenia 1.51 wynika, ze istnieje odwzorowanie
algebraiczne

Dy: D—C" gdzie AeZ™ ", |det A| =1, (4.1)

ktore przeksztalca biholomorficznie D na obszar ograniczony.

Obserwacja 1.1(h) i Obserwacja 1.2(f) gwarantuja, ze D, jako obszar biholomor-
ficzny z ograniczonym, jest -hiperboliczny. Dzieki Twierdzeniu 1.43, wystarczy tylko
sprawdzié¢, ze warunek (b) jest niezmiennikiem dla biholomorfizméw algebraicznych.
Dla odwzorowania ® 4 takiego, jak w warunku (4.1), mamy

oraz C(P4(D)) = AE(D).

Druga réwnoéé zachodzi dzieki tozsamodci ® 4(e?t?) = eA@+t) dla o € logD,v €
R™ t € R. A zatem jest takze €' (P4 (D)) = AC'(D).
Z drugiej strony AQ"™ = Q", jesli A jest macierza o wyrazach catkowitych.
Warunek (b) jest zatem réwnowazny warunkowi €' (®4(D)) N Q" = @. O

Podamy teraz pewne charakteryzacje dodatniosci jadra Bergmana i istnienia metryki
Bergmana.

LEMAT 4.6. Niech D C C™ bedzie pseudowypuklym obszarem Reinhardta takim, Ze
log D nie zawiera linii prostych. Wtedy nastepujgce dwa warunki sg rownowazne:

(a) Jagdro Bergmana kp jest $cisle dodatnie na D.
(b) Istnieje a € A(D) takie, e a; = 0 dla kaidego j € J(D).(10)

(1OW przypadku, gdy J(D) = @, warunek ten mozna rozumieé w dwojaki sposéb: albo jako
warunek pusto spelniony albo jako ”Istnieje o € A(D)”. Obydwie mozliwosci sa réwnowazne, poniewaz
A(D) # @, gdy log D nie zawiera linii prostych (Obserwacja 4.5).
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DowoOD. Dla dowodu lematu uzyjemy Wniosku 1.4(a).

(b) = (a).

Zauwazmy, ze zbiér £(D) jest niepusty (Obserwacja 4.5). Stad natychmiast wynika
warunek (1.2) i w konsekwencji dodatnio$é¢ jadra Bergmana.

(a) = (b).

Zbiér (D) jest baza ortogonalng przestrzeni L? (D), wigc istnieja odpowiednie state
aq > 0 takie, ze

kp(z) = Y adz*f,  zeD.
acA(D)

Mozna zalozyé, ze J(D) # @. Dzieki wlasno$ciom pseudowypuklych obszaréw Re-
inhardta (Twierdzenie 1.41) istnieje punkt w € D taki, ze w; = 0 dla wszystkich
j € J(D). Mamy tez a; > 0 dla j € J(D), o € A(D). Mozemy zatem napisac

kp(w) = > aalw®|* >0,

acA(D)
o; =0, jezeli jeJ(D)

z czego wnioskujemy istnienie zadanego a. 0

LEMAT 4.7. Niech D C C? bedzie pseudowypuktym obszarem Reinhardta takim, ze
log D nie zawiera linii prostych. Wtedy nastepujgce dwa warunki sq réwnowazne:

(a) Metryka Bergmana Bp jest dodatnio okreslona w kazdym punkcie D.
(b) Vie J(D) Ja,8€ AD): a# B, = 35 =0.

Dowop. (a) = (b).

Mozna zalozy¢, ze J(D) # &. Zaltézmy, ze 2 € J(D), innymi stowy Vo N D # &.
(Przypadek, gdy 1 € J(D) dowodzi sie analogicznie).

Ustalmy punkt 2% € D, 2°% = (29,0) # (0,0) i wektor X € C? X = (X1,0) # (0,0).
Z Whiosku 1.4 oraz Lematu 4.6 wynika istnienie funkcji f € L2 (D) takiej, ze f(2°) =0
i f/(29)X # 0. Na podstawie Twierdzenia D.12 mamy nastepujace przedstawienie

flz) = Z a2,

acA(D)

Stad

0 ?é f/(ZO)X = Z alaazf‘l_le,
a€A(D): a2=0

wigc istnieje v € A(D) takie, ze as = 0. Co wiecej, gdyby istniato tylko jedno takie «,
wtedy byloby f(2Y) # 0.

(b) = (a).

Z zalozenia i Lematu 4.6 wynika, ze warunek (1.2) zachodzi. Pozostaje pokazaé
warunek (1.3), aby méc zastosowaé Wniosek 1.4.

Wezmy dowolny punkt z° € D i wektor X € C?\ {0}. Rozwazymy trzy przypadki.

Przypadek 1: 20 = (0,0).

Mamy wtedy J(D) = {1, 2}, co implikuje istnienie (a1,0), (0, 32) € A(D) takich, ze
aq, B > 0. Zdefiniujmy

C:={a€R?: {(a,v) <0, dla kazdego v € ¢(D) \ {0}}. (4.2)
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Stozek C' jest wypukly. Ponadto, z Lematu 4.4 wynika, ze (a3 + 1,1),(1,62 + 1) €
C'. Stad mozemy wyciagna¢ wniosek, ze réwniez (1,1),(2,1),(1,2) € C, co oznacza
(0,0),(1,0),(0,1) € A(D).
Potézmy
f(z) := 21 + cza,
gdzie c jest stala taka, ze X1 + cXs # 0. Oczywiscie f(0) =0, f € L3 (D) oraz

f/(O)X = X1 + CXQ 7& 0.

Przypadek 2: 20 = (29,0), 20 # 0.
Z zalozenia mamy istnienie (ay,0) # (61,0) € A(D) a z Lematu 4.4, dodatkowo,
(201 +1,1) € A(D).
Jesli Xy # 0, niech
f(z) = 23t

Wtedy f/(29,0)X = (29)?* 71X, £ 0.
Jesli Xo =0, to
f(2) =20 = ()™ P

W rezultacie, f/(2?,0)X = (29)* "1 (ay — (1) X1 # 0.
W obydwu przypadkach mamy f € L? (D) i f(0) = 0.
Przypadek 3: 2° ¢ C2.
Niech w := (f—(l)l, f—gz) Zbiér A(D) jest niepusty (Obserwacja 4.5). Mozemy znalezé

a, B € A(D) takie, ze
<Oé - 67 U)> % 07

poniewaz stozek C' zdefiniowany wzorem (4.2) jest otwarty. Polézmy
f(z) = 2% — (%)= PP,
Zachodzi f € L2(D), f(z") =0 oraz

FE0X = (0 (o = 007 + (02 = )72 ) = ()%= Bu) 20,

1

co konczy dowod. (l

W Twierdzeniu 4.1 warunek (a) zawiera w sobie zalozenie o dodatniosci jadra i
istnieniu metryki Bergmana. Pokazemy teraz, ze warunek (b) réwniez to implikuje.

LEMAT 4.8. Niech D C C? bedzie pseudowypuktym obszarem Reinhardta takim, ze
log D nie zawiera linii prostych.

Jezeli €' (D)NQ? = @, to D jest B-hiperboliczny (tzn. kp > 0 oraz Bp jest dodatnio
okreslona,).

DowoOD. Skorzystamy z dwoch poprzednich lematéow oraz z faktu, ze A(D) # &
(Obserwacja 4.5). Przypadek, gdy J(D) = @ jest natychmiastowy. Jezeli J(D) jest
niepusty, to zachodzi co najmniej jedna z inkluzji R_ x {0} C €(D) lub {0}xR_ C &(D).

Poniewaz stozek €(D) jest wypukly oraz €(D) C R? , musi zachodzié réwniez €(D) C
R? . Na podstawie Lematu 4.4 oznacza to, ze Z3 C A(D). Zastosowanie Lematéw 4.6
i 4.7 koniczy dowdd. O

Podamy teraz pewng charakteryzacje zbioru ¢(D) dla D C C2.
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LEMAT 4.9. Niech D C C? bedzie pseudowypukliym obszarem Reinhardta takim, ze
log D nie zawiera linii prostych. Jezeli € (D) NQ?* = &, to

¢(D) =R — DNVinVi#o,

¢(D)=R_ x {0} <~ DNWVi#3,DNV, =

¢(D) = {0} x R_ — DNVi=2,DNV,#2,

¢(D) =R v dla pewnego v € R? : RunQ? = {0} — Dn(WhuW) =g

DowoOD. Mozemy zaltozy¢, ze (1,1) € D.
Podobnie jak w dowodzie poprzedniego lematu mozna stwierdzié¢, ze jesli DNV # @,
to R_ x {0} C €(D) oraz, analogicznie, {0} x R_ C €(D), gdy DNV, # &.
Zauwazmy, ze jesli v € €(D) N Q2 to
lim (e“’l,etw) =weD,
t—o00

poniewaz €(D) N Q% c €(D) c R2. Ponadto w; =0,gdy v; <0iw; =1, gdy v; =0.
Powyzsza obserwacja oraz wypuklosé stozka €(D) daja nam teze lematu. 0
Dodajmy jeszcze, ze w ostatnim przypadku €(D) = {0} wtedy i tylko wtedy, gdy D
jest ograniczony oraz D N (V3 U V3) =
Zanim przystapimy do dowodu Twierdzenia 4.1, przedstawimy jeszcze kilka uzytecz-

nych wynikéw.

LEMAT 4.10. Niech D C C" bedzie pseudowypuklym obszarem Reinhardta takim, Ze
J(D)={1,...,k} oraz niech ® = &4 : D — C" bedzie algebraicznym biholomorfizmem
na obraz.

Wtedy istnieje permutacja o : {1,...,n} — {1,...,n} taka, Ze
cod: CFxCrFCkxcr®

jest biholomorfizmem oraz 0 o ®(V;) =V, dlaj=1,... k.

Dowép. Dla macierzy A = [AL ]
® 4 mamy |det A| = 1. Co wiecej,

Lmel. o € Z"*" skojarzonej z biholomorfizmem

Al >0, dlal=1,...,n, m=1,...,k,

poniewaz DNV, # @ dlaj=1,... k.
Wezmy dowolny punkt z € D N C7}. Wtedy

0P
det ®'(2) = det [ ’ (z)} = det {A’ 24 ]
0zZm I,m=1...n zm Lm=1...,n
1 n L n L _
= H AT det [Ain]l 1 = izlzlzl At zg:l:l An—l
21...2%n M=Leees
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Pierwsze i ostatnie wyrazenie w powyzszym ciggu réwnosci sa funkcjami holomorficz-
nymi w D. Dlatego zachodzi réwniez réwnosé dla punktu z = (0,...,0, 2x41,...,2,) €
D:

n

1 n 1
0 # det (P/(Z) = dzi =t A—1 . zg:lzl An_l.

Wykorzystujac zerowanie si¢ wspotrzednych z; = -+ = 2z = 0, dostajemy stad
n
Y oAb=1 dlaj=1,...k
1=1

Poniewaz Ag € Zy dla j = 1,...,k, mozemy zalozyé¢ (permutujac wspéilrzedne w
razie potrzeby), ze

Ab=5y, gdyj=1,... .k l=1...n,

gdzie d;; oznacza delte Kroneckera.
W konsekwencji, otrzymujemy det ®'(2) # 0 dla z € Ck x C?~* oraz ®(V;) C V;,j =
1,...,k. To samo mozemy udowodnié dla ®~! = & 4. 0

Ponizsze lematy pochodza z pracy [Zwo 2000a] (zob. réwniez [Zwo 1999a]). Podajemy
je bez dowodow.

LEMAT 4.11 ([Zwo 1999a], [Zwo 2000a]). Niech B,v € R", ||v|| =1, {2"}52; C R"
bedq takie, ze ||z”| — 0o, S — v, gdy v — 00, oraz (B,v) < 0. Wtedy

e

(B,x2") — —o0, gdy v — +oc.

LEMAT 4.12 ([Zwo 1999a], [Zwo 2000a]). Niech C C R™ domknietym i wypuklym
stozkiem niezawierajgcym lingi prostych i takim, Ze C N Q"™ = {0}.
Wtedy dla dowolnego 6 > 0,v € C'\ {0} istnieje B € Z" takie, Ze

(B,v) >0,
(B,w) < § dla kazdego w € C, ||w|| = 1.

LEMAT 4.13 ([Zwo 1999a], [Zwo 2000a]). Niech D C C™ bedzie pseudowypukiym
ograniczonym obszarem Reinhardta. Ustalmy zo € 0D spelniajocy nastepujocy warunek:

dla dowolnego j € {1,...,n}, jesli 2 =0, to DNV; # @. (4.3)

Wtedy dla dowolnego ciggu (z1)32, C D zbieznego do zy oraz dla dowolnego f €
Span £(D)
im0

A o on) =0. (4.4)
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UWAGA 4.14. Podprzestrzeri SpanE(D) jest gesta w L3 (D), wiec warunek (4.4) w
poprzednim lemacie zachodzi dla wszystkich f € L3 (D).

DowOD TWIERDZENIA 4.1. (a) = (b)

Dowdd tej implikacji nie rézni sie w istotnych szczegdtach od dowodu Twierdze-
nia 1.43 (zob. [Zwo 1999a], [Zwo 2000a]) i jest prawdziwy nawet dla obszaréw nieogra-
niczonych w C™.

Przytoczymy go tutaj ze wzgledu na kompletnosé.

Zalézmy, ze (1,1) € D i wezmy v € €'(D) N Q?. Mozemy zalozyé, ze v € Z? oraz
v1, vy sa wzglednie pierwsze. Wystarczy pokazaé, ze krzywa (t~%1,t72),0 < t < 1, ma
skonczona dtugosé wzgledem metryki Bergmana.

Potézmy

e(A) == (AT, A7), A€ A(0,1)\ {0}.
Oczywiscie ¢ € O(A(0,1) \ {0}, D). Niech u()\) := kp(p())). Dzieki Lematowi 4.4
mamy
uN = Y aa AT =Y b,
a€Z?: (a+1,v) J=jo

gdzie bj, # 0. Nastepnie

02 logu(N) 0? = oo
5B (00 ) = T — (1o 3 by i)
NA DA\

Poniewaz ostatnie wyrazenie jest ograniczone dla 0 < |A| < 1, wiec réwniez mamy
fol Bp (go(t); gp’(t)) dt < 400, co konczy dowdd tej implikacji.

(b) = (a)

W dowodzie wykorzystamy kryterium Kobayashiego (Twierdzenie 1.9). Lemat 4.8
gwarantuje nam, ze warunki (1.2) oraz (1.3) sa spelnione. Wystarczy zweryfikowaé
warunek (1.5) dla funkcji z podprzestrzeni Span (D), ktéra jest gesta w L2 (D). Prze-
strzen Span&(D) sklada sie z kombinacji liniowych elementéow z (D), wiec mozemy
sie w rzeczywistosci ograniczy¢ w dowodzie jedynie do funkcji ze zbioru £(D).

Wezmy dowolny ciag (27)52; C D, nieposiadajacy punktu skupienia w D oraz do-
wolna funkcje z¢ € £(D). Bez straty ogdlnoéci mozemy zalozyé, ze (1,1) € D oraz
(2¥)%2.; € DN C? (dzigki cigglodci jadra Bergmana).

Rozwazymy trzy przypadki:

I. Ciag (2¥)%; nie ma punktu skupienia w C2.

II. Ciag (2”)52; posiada punkt skupienia zy € 9D spelniajacy warunek (4.3).

III. Punkt (0,0) € 9D jest punktem skupienia ciggu ()52 .

Zwr6émy uwage, ze gdyby istnial punkt zg # (0,0) nie spelniajacy warunku (4.3),
doktadnie jedna z jego wspolrzednych musiataby byé¢ zerowa — dla ustalenia uwagi
niech z; = 0,29 # 0. Wtedy D N'V; # &, czyli (—1,0) € €'(D), co przeczy zalozeniu.
Zatem powyzsze trzy przypadki wyczerpuja wszystkie mozliwosci zachowania sie ciagu

(2")721-
Przypadek I: Ciag (2¥)°2; nie ma punktu skupienia w C?
Niech
z¥ = log |2"|, v > 1.
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Mamy ||z"|| — oo. Ponadto, biorac w razie potrzeby stosowny podciag, dostajemy

v

] — v e (D), vV — 00.

Rozwazmy najpierw przypadek, gdy €(D) C R?.

Wtedy musi by¢ v = (—1,0) lub v = (0, —1). Zalézmy, ze v = (—1,0). To oznacza, ze
xy — —oo, czyli 2§ — 01 |25| — 400. Co wiecej, z Lematu 4.9 wynika, ze DNV; # @
oraz oy > 0. Ponadto, inkluzja €(D) C R? i Lemat 4.4 implikuja, ze funkcje stale
naleza do L2 (D).

Jesli a; > 0, to

M < ||1||De<w"7a> —0, v — 00,
kD(ZV)

dzigki Lematowi 4.11.
Jesli oy = 0, wtedy mozemy wzia¢ By € Z; takie, ze fo > max{as,0}. Mamy
2P e L3 (D) oraz
|(z")"] 25|~ 8 -
= <zllplz5]*2 =% =0, v — oo,
k}D(ZV) \/]{?D(ZV)
poniewaz zj — 00, gdy v — o0.

Jezeli nie zachodzi €(D) C R? , to musi byé €(D) = R, v dla pewnego v € R?\R-Q?.
Mozemy zatem skorzystaé¢ z Lematu 4.12 i wzia¢ B € Z? spelniajace warunek 0 <
(B,v) < —(a + 1,v). Mamy wtedy 27F € L2(D), bo (a + 8 + 1,v) < 0. Dzieki
Lematowi 4.11, dostajemy

AL B o gV
]{?D(ZV)

Przypadek II: Ciag (2”)52 ; posiada punkt skupienia zy € 0D spelniajacy warunek
(4.3).
Zdefiniujmy obszar D w nastepujacy sposéb

D:=D\ (V4 UVy), jezeli 2° € C2,
D:=D\V, jezeli 28 =0
lub D:= D\ Vs, jezeli 2 = 0.

Zauwazmy, ze log D = log D, L}(D) = L%(ﬁ) oraz €(D) = &(D).
Ponadto, DNVj, j = 1,2, moze by¢ albo pusty albo c-hiperboliczny (w tym wypadku
kolo albo pierscien, niekoniecznie ograniczony). Twierdzenie 1.51 pozwala nam wziaé

biholomorfizm algebraiczny ® = ® 4 przeksztalcajacy D na obszar ograniczony.

Z Lematu 4.10 wynika, ze det ®'(2") # 0, a punkt ®(2Y) € 8@(5) spelnia warunek
(4.3). Z faktu, ze

fod ' det(® 1) € L3 (®(D)) — feL?(D)
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oraz Lematu 4.13, mamy dla dowolnego f € L?(D) (a wiec i dla f(z) = 2%, ktoére
zostalo ustalone na poczatku dowodu):

fCEO & |[fo o7 (@(z"))]
VEp(zr)  Vkp(2¥) \/’%(5) (®(2))|det @' ()]
_Gos@E dn@ Y @E)]

ko) (®(="))

Przypadek III: Punkt (0,0) € 0D jest punktem skupienia ciagu (2¥)52 ;.
Podobnie, jak w dowodzie Przypadku I, zdefiniujmy

¥ :=log |2"|, v>1,

i zalézmy (wybierajac ewentualnie odpowiedni podciag i przenumerowujac jego wy-

razy), ze
v

—— — v e g(D), v — 00.
Eagl

Rozwazmy najpierw przypadek, gdy DNVy # @i DNV, = @. (Przypadek, gdy
DnNVy# @i DNVy =3 jest symetryczny). Mamy zatem oy > 0 oraz, z Lematu 4.9,
¢(D) = R_ x {0}, co oznacza, ze v = (—1,0) i 1 € L#(D).

Jezeli oy > 0, to stosujemy Lemat 4.11:

()|
\/ kD(ZV)

Gdy a; = 0, wtedy Lemat 4.4 gwarantuje istnienie 8o € Z takiego, ze P2 < o oraz
252 € L2(D). Zatem

< 1) pel®™® =0, v — 00.

v\a V|as
|(Z) | _ |Z2| <||252||D‘25‘a2_ﬁ2—>0, v — 00,

k’D(ZV) \/]{?D(ZV)

poniewaz z§ — 0, gdy v — oo.

Pozostaje nam jeszcze do rozpatrzenia przypadek, gdy D N (V3 U V,) = @.

Z Lematu 4.9 wnioskujemy, Ze v jest wektorem niewymiernym — takim, ze RvNQ? =
{0}. Lemat 4.12, zastosowany do stozka Ryvid = (a+1,v), daje nam istnienie 3 € Z?
takiego, ze 0 < (B,v) < —(a + 1,v). Z kolei, z Lematu 4.4 dostajemy 2**# € L2(D),
bo (a«+ B+ 1,v) < 0. Ponownie korzystamy z Lematu 4.11:

|(2")] atf N a+By . —(x”.8)
——— < [|2°"|Ip|(z") P = |2°Plpe " -0 v — o0
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DODATEK

Definicje i rezultaty, zebrane ponizej, zostaly zaczerpniete z nastepujacych pozycji:
[Jak—Jar 1998] (Funkcje holomorficzne, Funkcje plurisubharmoiniczne), [Ran 1995] i
[Lan 1972] (Teoria potencjatu), [Kli 1991] (Zespolona funkcja Greena) oraz [Fed 1969).
Ze wzgledu na wygode oraz potrzeby niniejszej rozprawy, niektére z nich zostaly podane
w formie innej niz w oryginale.

Funkcje holomorficzne

DEeFiNicJA D.1. Niech @ C C" bedzie zbiorem otwartym. Funkcje f : Q@ — C
nazywamy holomorficzng (f € O(Q)), jedli dla dowolnego punktu a € € istnieje r €
(0, dist (a, 0€2)) 1 liczby (aa)aczr C C takie, ze

flz) = Z ao(z —a)®, z € Ala,r)".

aEZi

Odwzorowanie f = (f1,...,fm) : @ — C™, (m > 1) nazywamy odwzorowaniem
holomorficznym (f € O(2,C™)), jedli f; € O(N),j=1,...,m

Jezeli €1y jest zbiorem otwartym w C" oraz f : Q — €y jest bijektywnym od-
wzorowaniem holomorficznym, to f nazywamy biholomorfizmem lub odwzorowaniem
biholomorficznym, a o zbiorach €2, )y méwimy, ze sa bitholomorficzne.

TWIERDZENIE D.2 (ZASADA IDENTYCZNOSCI). Jezeli D C C™ jest obszarem oraz
fyg € O(D), to nastepujgce warunki sqg réwnowazne:
(i) f=g
(ii) int{z € D: f(z) =g(2)} # 2.

TWIERDZENIE D.3 (WZzOR CALKOWY CAUCHY’EGO). Niech D1, ..., D, C C bedzie
ograniczonymi obszarami, ktorych brzeg jest skonczong sumgq rozlgcznych tukow Jor-
dana, zorientowanych dodatnio. Oznaczmy D := Dy x---x D,,. Jezeli f € O(D)NC(D),
to zachodzi wzor

Cla"';Cn)

op, (C1—21) ... (G — 2n)

d¢y...dC,, z=(z1,...,2n) € D.
8D,
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DEFINICJA D.4. Dla zbioru otwartego 2 C C™ zdefiniujmy
L2(Q) = {f € O() : /Q|f(z)]2d£2”(z) < +oo}.

Jest to przestrzen Hilberta z iloczynem skalarnym
()= [ fGaG)AL" ), fg e LhQ)
Q

i norma ||f|lo = {f, f)p-

LEMAT D.5. Dia dowolnego zbioru zwartego K C X oraz v > 0, spetniajgcych wa-
runek K + A(0,r)™ C Q, istnieje stala C > 0 taka, Ze

max | f(2)] < Cl|flle-

TWIERDZENIE RIEMANNA D.6. Niech D C C bedzie obszarem jednospdjnym (kto-
rego brzeg jest spojny). Wtedy D jest biholomorficzny z kolem jednostkowym.

TWIERDZENIE POINCARE’GO D.7. Dila n > 1 kula jednostkowa B,, nie jest biholo-
morficzna z polidyskiem A(0,1)™.

DEFINICIJA D.8. Niech {2 C C" bedzie zbiorem otwartym. Méwimy, ze () jest ob-
szarem holomorficznosci, jesli nie istnieja obszary ,Qo C C", takie, ze & ¢ Q,
I # Qo C QN Qispelniajace warunek

dla dowolnego f € O(2) istnieje feq takie,ze f=f w Q.

TWIERDZENIE D.9. Wszystkie obszary na plaszczyinie zespolonej sq obszarami ho-
lomorficznosci.

DEFINICIA D.10. Zbiér A C C" nazywamy:

(a) n—kotowym lub zbiorem Reinhardta, jedli dla dowolnych a = (aq,...,a,) € A,
Ay Ap € 0A(0,1)

(Maq, ..., \pan) € A
(b) zbalansowanym, jesli dla dowolnych a € A, A € A(0,1)

Aa € A.

DEFINICJA D.11. Dla zbioru Reinhardta A C C"™ jego obrazem logarytmicznym
nazywamy zbior

log A :={(z1,...,z,) ER": (™,...,€"™) € A}.
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TWIERDZENIE D.12. Niech D C C™ bedzie obszarem Reinhardta. Jezeli f € O(D),
to istniejq liczby (aq)aezn C C takie, Ze zachodzi réwnosé

f(z) = Z a2, zeD.

aEL™

Ponadto, szereg lagz®| jest zbiezny lokalnie jednostajnie na D.

[I<VAL
TWIERDZENIE D.13. Niech D C C™ bedzie obszarem Reinhardta. Nastepujoce wa-
runki sq rownowazne:

(i) D jest obszarem holomorficznosci.
(i) log D jest wypukty oraz, dla dowolnego j =1,...,n i A € A(0,1),
jesli DNV # @ i (2,2;,2")e D, to (¢,Xz;,2") e D,
gdzie V; :={z€C": z; =0},j=1,...,n.

Funkcje plurisubharmoniczne

DEFINICJA D.14. Niech  C R? ~ C bedzie zbiorem otwartym. Funkcje h €
C%(Q, R) nazywamy harmoniczng, jesli

0*h  0%h
92 + 8_3;2 =0 na (.
Funkcje u : Q — [—o0, +00) nazywamy subharmoniczng (u € SH (Q2)), jesli spelnione
sg nastepujace dwa warunki:
(a) u jest pélciagla z géry.
(b) Dla dowolnego obszaru D CC €2 i dla dowolnej funkeji h harmonicznej na D i
ciagtej na D zachodzi

jesli u<h na 9D, to u<h na D.

TWIERDZENIE D.15. Niech Q C C bedzie zbiorem otwartym. Jesli uw € SH (), to
zachodzi wzor

1
< —
u(z) 5

2m
/ u(z + re') dt, z € Q,0 <r < dist (z,090).
0

DEeFINICJA D.16. Niech 2 C C™ bedzie zbiorem otwartym. Funkcje u : 2 —
[—00, +00) nazywamy plurisubharmoniczng (u € PSH (92)), jesli zachodza dwa warunki

(a) u jest pélciagta z gory.
(b) Dla dowolnych a € 2, X € C™ funkcja jednej zmiennej

{CeC:a+(X e} > A—ula+ AX)

jest subharmoniczna.

Moé6wimy, ze funkcja u € C(2, R) jest $cisle plurisubharmoniczna, jesli dla dowolnego
obszaru D CC ( istnieje € > 0 takie, ze funkcja

D3>z u(z) —el|z|?
jest plurisubharmoniczna.
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TWIERDZENIE D.17. Niech Q C C" bedzie zbiorem otwartym.

(a) Jesli f € O(R), to log|f| € PSH(Q).

) Jesli f € O(24,9), gdzie Qq jest zbiorem otwartym w C™, to uo f € PSH (£21).
(c) Jesli funkcja u € PSH (C™) jest ograniczona od gdry, to jest stala.

) Jesli D C C™ jest obszarem i funkcja uw € PSH (D) nie jest stala, to u nie osigga
maksimum globalnego w D.
(e) Jesli u € C2(Q,R), to u jest plurisubharmoniczna wtedy i tylko wtedy, gdy dla

wszystkich z € Q, X € C"

. ou? —
j,%—:l 8zj8,zk J

DEeFiNicJA D.18. Niech 2 C C™ bedzie zbiorem otwartym. Funkcje v : 2 —
[—00, +00) nazywamy wyczerpujgcq (dla §2), jesli

{z€eQ:u(z) <t} CcCQ, dla dowolnego t < sup u.
Q

Zbior Q) nazywamy pseudowypukiym, jesli istnieje ciggta, wyczerpujaca funkcja plu-
risubharmoniczna dla 2.

Zbiér Q nazywamy hiperwypukiym, jesli istnieje ciagla i ujemna, wyczerpujaca funk-
cja plurisubharmoniczna dla €.

TWIERDZENIE D.19. Zbior otwarty 2 C C™ jest pseudowypukly wtedy i tylko wtedy,
gdy jest obszarem holomorficznosci.

Teoria potencjalu

DEeFiNicJA D.20. Zbior E C C nazywamy polarnym, jesli istnieje funkcja u €
SH (C), u # —oo taka, ze E C u~!(—00).

DEFINICJA D.21. Niech P(K) bedzie zbiorem wszystkich probabilistycznych miar
borelowskich u, ktérych support zawarty jest w zbiorze zwartym K C C.
Zdefiniujmy potencjal logarytmiczny p, miary p € P(K) w nastepujacy sposob

pu(2) = / log |z — w|du(w), z e C.
K
Miare v € P(K) nazywamy miarg réwnowagi zbioru K, jesli
I(v) = sup{I () : p € P(K)},
gdzie
100 = | pulz)du(e)

jest energig miary pu.
Pojemnosciq logarytmiczng zbioru E' C C nazywamy liczbe
capE — esup{](u):,ue'P(K), K zwarty podzbiér E}
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TWIERDZENIE D.22.

(a) Potencjal p,, jest funkcjg subharmoniczng na C i harmoniczng w C\ K.

(b) Jezeli K jest niepolarnym zbiorem zwartym, to istnieje jedyna miara réwnowagi
MK -

(c) Zbior borelowski E jest polarny wtedy i tylko wtedy, gdy cap E = 0.

TWIERDZENIE D.23.

(a) Jesli By C Ey C C, to cap By < cap Es.

(b) Jesli (By)32, jest wstepujgcq rodzing borelowskich podzbioréw C, to

oo
By) = i By.
Cap(kU1 k) = lim cap By
(c) Jesli (Ky)52, jest zstgpuyq,cq rodzing zwartych podzbioréw C, to

cap( ﬂ Kk) = kli_)ngocapKk.
k=1
(d) Jesli B = Ufj:l By, gdzie By, sq borelowskimi podzbiorami C oraz diam B < d
(d>0,N=1,2,...,00), to
N
1 1
o <
lOg (capB) IOg (Cap Bk)

(e) Jesli B = Uivzl By, gdzie By sq borelowskimi podzbiorami C oraz takimi, Ze
dist (Bg,B) 2 d>0 (kl=1,....N, k£, N =1,2,...,00), to
N
1 1
) D
+(_d \~ +(_d
IOg (capB) k=1 lOg (caka)
(f) Dla dowolnego zbioru zwartego K C C, mamy cap K < diam K oraz cap K =
cap (0K). Ponadto cap A(z,r) = cap 0A(z,7) =r dla z € C,r > 0.

DEeFINICIJA D.24. Niech D C C bedzie obszarem. Méwimy, ze punkt zg € 9D jest
punktem regularnym zbioru D (ze wzgledu na problem Dirichleta), jesli istnieje otoczenie
otwarte U punktu 2 i ujemna funkcja v € SH (U N D) taka, ze limps,_,., u(z) = 0.

Obszar D nazywamy regularnym, jezeli kazdy jego punkt brzegowy jest regularny.

TWIERDZENIE D.25. Niech D C C bedzie obszarem oraz zy € 0D. Jesli sktadowa
spojna brzegu D zawierajgca punkt zy jest rézna od {zo}, to zo jest punktem regularnym
zbioru D.

TWIERDZENIE D.26 (KRYTERIUM WIENERA). Niech D C C bedzie obszarem oraz
zo € OD. Zdefiniugmy zbiory

Fk‘Z{ZEC\D‘karl |Z—Zo|<pk} k>1,
gdzie pi, k > 1 sq liczbami dodatnimi takimi, ze 1 < a < p‘“ <b, k>1, dla pewnych

liczb a,b > 1.
Wtedy punkt zy jest reqularny ze wzgledu na problem Dirichleta dla D wtedy i tylko

wtedy, gdy .
logpr
Z log cap Fy = oo
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TWIERDZENIE D.27 (TWIERDZENIE FROSTMANA). Niech pu bedzie miarg réwnowagi
niepolarnego zbioru zwartego K.

Wtedy p, > logcap K na C oraz p, = logcap K on K \ F, gdzie F C 0K jest
zbtorem polarnym typu F,.

Ponadto, jezeli punkt z € OK jest reqularny ze wzgledu na problem Dirichleta dla
nieograniczonej sktadowej spdjnej C\ K, to p,(z) = logcap K.

DEFINICJA D.28. Niech D C C bedzie obszarem. (Klasyczng) funkcjo Greena ob-
szaru D z biegunem w punkcie w € D nazywamy funkcje gp(w,+) : D — [—00,+00),
speliajaca nastepujace warunki:

(a) gp(w,-) jest subharmoniczna na D i harmoniczna na D \ {w};

(b) gp(w,-) —log |- —w]| jest ograniczona na D;

(c) gp(w,z) — 0, gdy z — 29 € D \ F, gdzie F jest polarnym podzbiorem 0D.

TWIERDZENIE D.29. Niech D C C bedzie obszarem takim, Ze zbior C\ D jest nie-
polarny, oraz niech w € 0D.

(a) Istnieje jedyna funkcja Greena gp(w,-) dla D z biegunem w w.

(b) gp(w,2) =gp(z,w) dla z,w € D.

(¢) lim,_,., gp(w, z) = 0 wtedy i tylko wtedy, gdy zy € D jest punktem regularnym
zbioru D.

Zespolona funkcja Greena

DEeFiNicJA D.30. Niech D bedzie obszarem w C™. Funkcjq Greena obszaru D z
biegunem w punkcie w € D nazywamy

gD(wa Z) = sup{u(z)},
gdzie supremum bierzemy po wszystkich ujemnych funkcjach v € PSH (D) takich, ze
u — log(- — w) jest ograniczona od géry.

TWIERDZENIE D.31. Niech D bedzie obszarem w C™ oraz niech w € D.

(a) Funkcja gp(w,-) jest plurisubharmoniczna na D.
(b) Dla dowolnego obszaru G CC D i dla dowolnej funkcji w € PSH(G) zachodzi

jesli u < gp(w,-) na 0G, to u<gp(w,:) na G.

(c) Jezeli D jest ograniczonym obszarem hiperwypuklym, to gp jest ciggla na DxD.
W szczegdlnosci, lim,_,9p gp(w, z) = 0.

(d) Jezeli D jest obszarem w C, ktérego dopelnienie nie jest zbiorem polarnym, to
go(w,-) =gp(w,).
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Inne

TWIERDZENIE D.32 (NIEROWNOSC SCHWARZA). Niech X bedzie przestrzeniq wek-
torowg nad C (lub R) z iloczynem skalarnym (-,-)x. Wtedy dla dowolnych z,y € X
zachodzi

[z, y)x * < [z, 2)x [y, v)x|.
Ponadto, rownosé zachodzi wtedy i tylko wtedy, gdy x @y sq liniowo zalezne.

TwIERDZENIE D.33 (TWIERDZENIE RIESZA). Niech H bedzie przestrzeniq Hilberta
z iloczynem skalarnym (-, -)g. Jezeli f : H — C jest cigglym funkcjonalem liniowym,
to istnieje y € H takie, Ze

f(x) ={x,y)m, r € H.

DEFINICJA D.34. Niech 2 C R” bedzie zbiorem otwartym. Funkcje f : @ — R
nazywamy funkcjq lipschitzowskq, jezeli istnieje stala L > 0 taka, ze dla dowolnych
x,y €

|f(2) = f(y)| < Lz —yl|.

TWIERDZENIE D.35 (TWIERDZENIE RADEMACHERA). Jezeli f:  — R jest funk-
cjq lipschitzowskq na zbiorze otwartym 2 C R™, to f posiada pochodng w prawie wszyst-
kich (wzgledem miary L™) punktach zbioru ).

TWIERDZENIE D.36 (WzOR GREENA). Niech D C R? bedzie ograniczonym obsza-
rem, ktorego brzeg jest skoriczong sumgq rozlgcznych tukéw Jordana, zorientowanych
dodatnio. Jezeli funkcje P,Q : 2 — R sq lipschitzowskie na pewnym otoczeniu €2 zbioru
D, to zachodzi wzor

P(z,y)dx + Q(z,y) dy = /

D

(2w~ 5 ) ac¥on)

oD
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LISTA OZNACZEN

N — zbiér liczb naturalnych: 1,2,3,...;
Z, — zbior liczb catkowitych;
@Q — zbior liczb wymiernych;
R — zbiér liczb rzeczywistych;
C — zbidr liczb zespolonych;
Re z — cze$é rzeczywista liczby z € C;
Im z — czesé urojona liczby z € C;
Ay = AN[0,+00);
A_ = AN (—00,0];
A, = A\ {0};
A+B:={a+b:ac Abe B};
A" = A X ... X A;

—_——
A — domkniecie zbioru A;
Alw,r) ={z€C: |z —w| <r};
B,, — kula jednostkowa w C";
(+,-) — zespolony iloczyn skalarny w C™;
| - || — norma euklidesowa w C™;
dist (Za A) ‘= SUPgea ||Z - CI,H;
L" — n—wymiarowa miara Lebesgue’a;
C(D,G) — zbiér odwzorowan ciagtych f: D — G;
C*(D,G) — zbiér odwzorowan klasy C* f: D — G;
O(D, ) — zbiér odwzorowan holomorficznych f: D — G;
C(D):=C(D,C); O(D) := O(D,C);
SH (D) — zbiér funkcji subharmonicznych na D;
PSH (D) — zbiér funkcji plurisubharmonicznych na D;
L?(D) — przestrzen funkcji holomorficznych na D, catkowalnych z kwadratem;
(-,-yp — iloczyn skalarny w przestrzeni L3 (D);
|- lp — norma w przestrzeni L3 (D);
Kp — funkcja jadrowa Bergmana obszaru D;
kp — jadro Bergmana obszaru D;
Bp — pseudometryka Bergmana obszaru D;
bp — pseudoodlegtosé¢ Bergmana obszaru D,
Lg,, () — diugos¢ krzywej o wzgledem pseudometryki Gp;
cp — pseudoodlegto$é Carathéodory’ego obszaru D;
gp — zespolona funkcja Greena obszaru D;
gp — klasyczna funkcja Greena obszaru D;
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cap F — pojemno$¢ logarytmiczna zbioru E;
Wi — miara réwnowagi zbioru K;
pu — potencjal logarytmiczny zwigzany z miarg u;

1
()= o i o GCNDY
= (17 ds :
D (Z) T fO 52\/— log cap (A(z,6)\D) ’
(z) i={w e C: 52r <|w—2] < 5%}
=27 ... zgn, dlaa € 27
Da(z) = (4,...,247"), dla A = [A]); 4
Vii={2€C": z; =0};
E=E(D):={2*€ Li(D): a €Z"};
Span £(D) — najmniejsza liniowa podprzestrzen L% (D), zawierajaca zbiér €(D);
A=AD):={a€eZ": z* € L3(D)};
J(D):={je{l,...,n}: V;ND # o},
log D — obraz logarytmiczny zbioru Reinhardta D;
¢(D) — maksymalny stozek zawarty w log D, dla zbioru Reinhardta D;
¢(D) := {v € R" : istnieje lim;_, 4o exp(a+ tv) € D};
¢'(D) := ¢(D) \ €(D).

N
>

.....

66



LITERATURA CYTOWANA

[Ber 1950] S. Bergman, The kernel function and conformal mapping, Math. Surveys V,
Amer. Math. Soc., 1950.
[Bre 1955] J. Bremermann, Holomorphic continuation of the kernel and the Bergman

metric, in ,Lectures on functions of a complex variable”, Univ. of Mich. Press
(1955), 349-383.

[Blo—Pfl 1998] Z. Blocki, P. Pflug, Hyperconvezity and Bergman completeness, Nagoya Math.
J. 151 (1998), 221-225.
[Blo 2004] 7. Blocki, The Bergman metric and the pluricompler Green function, Trans.

Amer. Math. Soc. (to appear).

[Car—Ceg—Wik 1999] M. Carlehed, U. Cegrell, F. Wikstrom, Jensen measures, hyperconverity and
boundary behavior of the pluricomplex Green function, Ann. Polon. Math. 71
(1999), no. 1, 87-103.

[Chen 1999] B.—Y. Chen, Completeness of the Bergman metric on non—smooth pseudoco-
nvex domains, Ann. Polon. Math. 71(3) (1999), 242-251.

[Chen 2000] B.—Y. Chen, A remark on the Bergman completeness, Complex Variables, The-
ory Appl. 42 (2000), no. 1, 11-15.

[Chen 2001] B.—Y. Chen, A note on Bergman completeness, Int. J. Math. 12 (2001), no. 4,
383-392.

[Chen—-Zhang 2000] B.—Y. Chen, J.—H. Zhang, On Bergman completeness and Bergman stability,
Math. Ann. 318 (2000), 517-526.

[Chen—Zhang 2002] B.—Y. Chen, J.—H. Zhang, The Bergman metric on a Stein manifold with a
bounded plurisubharmonic function, Trans. Amer. Math. Soc. 354(8) (2002),
2997-3009.

[Chen—-Kam—Ohs 2004] B.—Y. Chen, J. Kamimoto, T. Ohsawa, Behavior of the Bergman kernel at
infinity, Math. Z., published online (5 May 2004).

[Die—For—Her 1984] K. Diederich, J. E. Fornaess, G. Herbort, Boundary behaviour of the Bergman
metric, Proc. Symp. in Pure Math. 41 (1984), 59-67.

[Fed 1969] H. Federer, Geometric Measure Theory, Springer Verlag, 1969.

[Hed 1972] L. 1. Hedberg, Bounded point evaluations and capacity, J. Funct. Anal. 10
(1972), 269-280.

[Her 1999] G. Herbort, The Bergman metric on hyperconvexr domains, Math. Z. 232(1)
(1999), 183-196.

[Jak—Jar 1998] P. Jakébczak, M. Jarnicki, Wstep do teorii funkcji holomorficznych wielu zmien-
nych zespolonych, Wydawnictwo UJ, 2002.

[Jar—Pfl 1985] M. Jarnicki, P. Pflug, Non—extendable holomorphic functions in Reinhardt do-
mains, Ann. Polon. Math. 46 (1985), 129-140.

[Jar—Pfl 1989] M. Jarnicki, P. Pflug, Bergman completeness of complete circular domains,
Ann. Polon. Math. 50 (1989), 219-222.

[Jar—Pfl 1993] M. Jarnicki, P. Pflug, Invariant Distances and Metrics in Complex Analysis,
Walter de Gruyter, Berlin, 1993.

[Jar—Pfl 2004] M. Jarnicki, P. Pflug, Invariant Distances and Metrics in Complex Analysis

— revisited (to appear).
[Jar—Pfl-Zwo 2000] M. Jarnicki, P. Pflug, W. Zwonek, On Bergman completeness of non—hyper-
convex domains, Univ. Iag. Acta Math. 38 (2000), 169-184.

67



[Juc 2004]

[Kli 1991]
[Kob 1959]

[Kob 1962]
[Lan 1972]
[Nik 2003]
[Ohs 1981]
[Ohs 1984]
[Ohs 1993]
[Pfl 1975]

[Pl 1982]

[Pf 2000]
[PA-Zwo 2002]
[Pfl-Zwo 2003]
[Ran 1995]
[Vla 1966]

[Zal 1969]
[Zwo 1999a]
[Zwo 1999b)]
[Zwo 2000a]
[Zwo 2000b)]
[Zwo 2001]

[Zwo 2002]

P. Jucha, Bergman completeness of Zalcman type domains, Studia Math. 163
(2004), 71-83.

M. Klimek, Pluripotential Theory, Oxford University Press, 1991.

S. Kobayashi, Geometry of bounded domains, Trans. Amer. Math. Soc. 92
(1959), 267—-290.

S. Kobayashi, On complete Bergman metric, Proc. Amer. Math. Soc. 13 (1962),
511-513.

N. S. Landkof, Foundations of Modern Potential Theory, Springer Verlag,
1972.

N. Nikolov, The completeness of the Bergman distance of planar domains has
a local character, Complex Variables, Theory Apl. 48 (2003), no. 8, 705—709.
T. Ohsawa, A remark on the completeness of the Bergman metric, Proc. Japan
Acad. 57 (1981), 238-240.

T. Ohsawa, Boundary behavior of the Bergman kernel function on pseudoco-
nvez domains, Publ. RIMS Kyoto Univ. 20 (1984), 897-902.

T. Ohsawa, On the Bergman kernel of hyperconvex domains, Nagoya Math. J.
129 (1993), 43-52.

P. Pflug, Quadratintegrable holomorphe Funktionen und die Serre Vermutung,
Math. Ann. 216 (1975), 285—288.

P. Pflug, Various applications of the existence of well growing holomorphic
functions, Functional Analysis, Holomorphy and Approximation Theory, J. A.
Barossa (ed.), Math. Studies 71 (1982), North—-Holland.

P. Pflug, Invariant metrics and completeness, J. Korean Math. Soc. 37 (2000),
no. 2, 269-284.

P. Pflug, W. Zwonek, Li —domains of holomorphy and the Bergman kernel,
Studia Math. 151 (2002), no. 2, 99-108.

P. Pflug, W. Zwonek, Logarithmic capacity and Bergman functions, Archiv
der Math. 80 (2003), 536-552.

T. Ransford, Potential Theory in the Complexr Plane, Cambridge University
Press, 1995.

V. Vladimirov, Methods of the Theory of Several Complex Variables, Cam-
bridge, MA, 1966.

L. Zalcman, Bounded analytic functions on domains of infinite connectivity,
Trans. Amer. Math. Soc. 144 (1969), 241-2609.

W. Zwonek, On Bergman completeness of pseudoconvex Reinhardt domains,
Ann. Fac. Sci. Toulouse, VI. Sér., Math. 8 (1999), 537-552 (no. 3).

W. Zwonek, On hyperbolicity of pseudoconvex Reinhardt domains, Arch. Math.
72 (1999), 304-314.

W. Zwonek, Completeness, Reinhardt domains and the method of complex
geodesics in the theory of invariant functions, Diss. Math. 388 (2000).

W. Zwonek, On Carathéodory completeness of pseudoconvex Reinhardt doma-
ins, Proc. Amer. Math. Soc. 128 (2000), no. 3, 857-864.

W. Zwonek, An example concerning Bergman completeness, Nagoya Math. J.
164 (2001), 89-102.

W. Zwonek, Wiener’s type criterion for Bergman erhaustiveness, Bull. Pol.
Acad. Math. 50(3) (2002), 297-311.

68



