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WSTĘP

W latach dwudziestych ubiegłego wieku Stefan Bergman (zob. listę publikacji w
[Ber 1950]) zainicjował badania funkcji holomorficznych całkowalnych z kwadratem.
Wprowadził również, ściśle z nimi związane, funkcję jądrową oraz metrykę, które póź-
niej zostały nazwane jego imieniem. Motywacją była próba rozwiązania problemu kla-
syfikacji obszarów w Cn, który zrodził się pod koniec dziewiętnastego wieku i pozostaje
jednym z największych wyzwań współczesnej analizy zespolonej wielu zmiennych. Po-
incaré pokazał mianowicie, że — w przeciwieństwie do płaszczyzny zespolonej, gdzie
mamy twierdzenie Riemanna o odwzorowaniach konforemnych — już kula jednostkowa
w C2 nie jest biholomorficzna z bidyskiem. Jądro oraz metryka Bergmana, jako nie-
zmienniki biholomorfizmów, były naturalnymi obiektami, które mogły decydować, czy
lub kiedy dwa obszary są podobne w rozumieniu analizy zespolonej.

W naturalny sposób pojawiło się także pytanie o zupełność obszarów względem me-
tryki Bergmana oraz wyczerpywalność (dążenie jądra Bergmana do nieskończoności
przy zbliżaniu się do brzegu). Bremermann ([Bre 1955]) udowodnił, że każdy obszar
wyczerpywalny lub zupełny w sensie Bergmana musi być pseudowypukły. Przykład
koła jednostkowego bez środka na płaszczyźnie pokazuje, że żadna z implikacji odwrot-
nych nie może zachodzić.

Bezpośrednie badanie obiektów wprowadzonych przez Bergmana oraz własności z
nimi związanych (zupełność) wiązało się ze znacznymi trudnościami technicznymi. Do-
piero kryterium Kobayashiego ([Kob 1959]) znacznie ułatwiło i przez długi czas było
niemal jedynym narzędziem wykorzystywanym do badania zupełności w sensie Berg-
mana. Kobayashi zapytał czy, podany przez niego, warunek wystarczający na zupełność
jest również warunkiem koniecznym. Przez długi czas pytanie to pozostawało bez od-
powiedzi — dopiero Zwonek ([2001]) wskazał kontrprzykład.

Problem zupełności ma długą historię. W 1981 roku Ohsawa ([Ohs 1981]) udowod-
nił, że ograniczone obszary pseudowypukłe z brzegiem klasy C1 są zupełne w sensie
Bergmana, następnie Jarnicki i Pflug pokazali ([Jar–Pfl 1989]), że ograniczone i pseu-
dowypukłe obszary zbalansowane z ciągłym funkcjonałem Minkowskiego są zupełne.
Obszary z obydwu wspomnianych klas są hiperwypukłe. Stąd pytanie, czy hiperwypu-
kłość implikuje zupełność. Herbort ([Her 1999]) oraz Błocki i Pflug ([Bło–Pfl 1998])
udowodnili, że istotnie tak jest. Już wcześniej Ohsawa ([Ohs 1993]) pokazał, że z hiper-
wypukłości wynika wyczerpywalność. A na płaszczyźnie zespolonej, wyczerpywalność
pociąga za sobą zupełność (zob. [Chen 2000]). Widać zatem, że te trzy pojęcia (hiperwy-
pukłość, wyczerpywalność i zupełność) są ze sobą ściśle związane. Jednakże żadne dwa
z nich nie są równoważne — wystarczy wspomnieć o różnych obszarach typu Zalcmana,
które są doskonałymi przykładami rozróżniającymi te własności.
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Skoro problem zupełności obszarów hiperwypukłych został rozstrzygnięty, kierunek
dalszych badań wyznaczają różne typy obszarów niehiperwypukłych oraz, najmniej
do tej pory zbadanych, obszarów nieograniczonych. Sukces metod związanych z teorią
potencjału i pluripotencjału w badaniach problemu zupełności pozwala mieć nadzieję,
że ich zastosowanie w nowych sytuacjach również przyniesie efekty.

W Rozdziale I niniejszej pracy definiujemy wszystkie niezbędne pojęcia i przedsta-
wiamy główne, poznane do tej pory, rezultaty badań. Zakres materiału tam zaprezen-
towanego podyktowany jest jego związkiem z głównymi tezami tej rozprawy oraz z
zainteresowaniami autora i nie pretenduje do miana kompletnego przeglądu wyników
z tej dziedziny. Skupiamy się głównie na wspomnianych wyżej własnościach hiperwy-
pukłości, wyczerpywalności i zupełności w sensie Bergmana. Przyjrzymy się dokładniej
związkom między nimi oraz ich charakteryzacjom w pewnych przypadkach (obszary
płaskie i obszary Reinhardta) ze szczególnym uwzględnieniem aspektów związanych z
teorią potencjału.

W Rozdziale II podejmujemy próbę charakteryzacji zupełności w sensie Bergmana
na płaszczyźnie zespolonej za pomocą pojęć związanych z teorią potencjału. Podajemy
pewne wyniki częściowe, których dowody bazują na metodach użytych w [Zwo 2002]
przy charakteryzacji wyczerpywalności.

Wnioski z Rozdziału II dotyczące specjalnych obszarów zebraliśmy w Rozdziale III.
Dowodzimy pełnej charakteryzacji ze względu na zupełność dużej rodziny obszarów
typu Zalcmana. Jest to odpowiedź na pytanie postawione przez Pfluga w [Pfl 2000].
Zestawiamy warunki typu Wienera dla tych obszarów równoważne zupełności, wyczer-
pywalności i hiperwypukłości.

Rozdział IV poświęcony jest nieograniczonym obszarom Reinhardta. Podajemy cha-
rakteryzację tych obszarów Reinhardta w C2 oraz c–hiperbolicznych obszarów Rein-
hardta w Cn, które są zupełne w sensie Bergmana.

Pracę zamyka Dodatek, w którym zostały zebrane niektóre klasyczne twierdzenia i
definicje, wykorzystywane we wcześniejszych rozdziałach, spis ważniejszych oznaczeń
oraz lista cytowanej literatury. Chcielibyśmy podkreślić, że szeroki przegląd mate-
riału, dotyczącego zagadnień związanych z funkcjami Bergmana, znajdzie Czytelnik
w [Jar–Pfl 1993] i [Jar–Pfl 2004].

Autor chciałby złożyć szczególne podziękowania dr. hab. Włodzimierzowi Zwonkowi
— za liczne propozycje problemów, cenne wskazówki i dyskusje, ogromną pomoc w
trakcie pisania tej pracy oraz za cierpliwość; prof. Peterowi Pflugowi — za gościnność,
zachętę do zajęcia się niektórymi problemami oraz trafne uwagi i wskazówki; prof.
Markowi Jarnickiemu — za inspirację do zajmowania się matematyką i wprowadzenie
w świat analizy zespolonej; oraz innym osobom, które przyczyniły sie bezpośrednio lub
pośrednio do powstania tej pracy.

W trakcie pisania tej rozprawy, autor przebywał na stypendium DAAD w Carl von
Ossietzky Univerität w Oldenburgu.
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ROZDZIAŁ I

WPROWADZENIE

1.1. Funkcje Bergmana

Niech D będzie obszarem w Cn. Oznaczmy przez L2h(D) zbiór funkcji holomorficz-
nych na D całkowalnych z kwadratem. Jest to ośrodkowa przestrzeń Hilberta z iloczy-
nem skalarnym

⟨f, g⟩D :=
∫
D

fg dL2n, f, g ∈ L2h(D),

gdzie L2n oznacza 2n–wymiarową miarę Lebesgue’a. Normę w tej przestrzeni oznaczmy
przez ∥f∥D, f ∈ L2h(D).

Zauważmy, że z formuły całkowej Cauchy’ego (lub z Lematu D.5) wynika ciągłość
funkcjonału liniowego

L2h(D) ∋ f 7→ f(z) ∈ C

dla dowolnego punktu z ∈ D. Dzięki twierdzeniu Riesza o reprezentacji (Twierdze-
nie D.33), istnieje rodzina funkcji KD(·, z) ∈ L2h(D), z ∈ D, o następującej własności
reprodukcji

⟨f,KD(·, z)⟩D = f(z), f ∈ L2h(D), z ∈ D.

Funkcję
KD : D ×D → C

nazywać będziemy funkcją jądrową Bergmana, a funkcję jej wartości na przekątnej
zbioru D

kD(z) := KD(z, z), z ∈ D,

jądrem Bergmana.

Niektóre własności funkcji jądrowej i jądra Bergmana zebrane są w poniższej obser-
wacji.

Obserwacja 1.1 ([Jar–Pfl 1993]). Niech D, Dj (j = 1, 2, . . . , ) będą obszarami w
Cn.

(a) KD(z, w) = ⟨KD(·, w),KD(·, z)⟩D = KD(w, z), z, w ∈ D.
(b) Odwzorowanie (z, w) 7→ KD(z, w) jest holomorficzne w D × D⋆, gdzie D⋆ :=
{z : z ∈ D}.
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(c) Jeżeli (φj)j∈J jest bazą ortonormalną przestrzeni L2h(D), gdzie J ̸= ∅ jest skoń-
czonym lub przeliczalnym zbiorem wskaźników, to

KD(z, w) =
∑
j∈J

φj(z)φj(w), z, w ∈ D

oraz kD(z) =
∑
j∈J

|φj(z)|2, z ∈ D.

(d) Zachodzi wzór

kD(z) = sup{|f(z)|2 : f ∈ L2h(D), ∥f∥D ⩽ 1}, z ∈ D.
(e) Jeżeli D1 ⊂ D2, to kD1 ⩾ kD2 .
(f) Jeżeli D =

∪∞
j=1Dj jest sumą wstępującego ciągu obszarów, to KDj → KD

lokalnie jednostajnie na D ×D oraz kDj → kD malejąco na D (przy j →∞).
(g) Jeżeli D =

∩∞
j=1Dj jest przecięciem zstępującego ciągu obszarów, to KDj → KD

lokalnie jednostajnie na D×D wtedy i tylko wtedy, gdy kDj → kD punktowo na
D (przy j →∞).

(h) Niech G będzie obszarem w Cn oraz niech F : D → G będzie odwzorowaniem
biholomorficznym. Wtedy

KG(F (z), F (w)) detF ′(z)detF ′(w) = KD(z, w), z, w ∈ D.
(i) Jeżeli G jest obszarem w Cm, to
KD×G((z1, w1), (z2, w2)) = KD(z1, z2)KG(w1, w2), z1, z2 ∈ D,w1, w2 ∈ G.
(j) Zachodzą wzory:

KBn(z, w) =
n!
πn

(1− ⟨z, w⟩)−(n+1), z, w ∈ Bn,

K∆(0,1)n(z, w) =
1
πn

n∏
j=1

1
(1− zjwj)2

, z, w ∈ ∆(0, 1)n.

Przy następującym założeniu dla obszaru D:

kD(z) > 0, z ∈ D, (1.1)

funkcja log kD jest plurisubharmoniczna na D i można dobrze zdefiniować półokreśloną
dodatnio formę hermitowską

BD(z;X) :=
n∑
j,k=1

∂2

∂zj∂zk
log kD(z)XjXk, z ∈ D,X ∈ Cn.

Indukowaną przez nią pseudometrykę

βD(z;X) :=
√
BD(z;X), z ∈ D,X ∈ Cn,

nazywamy pseudometryką Bergmana.
Pseudoodległością Bergmana nazywamy funkcję

bD(z, w) := inf{LβD(α) : α ∈ C1([0, 1], D), α(0) = z, α(1) = w}, z, w ∈ D,
gdzie

LβD (α) :=
∫ 1
0
βD(α(t);α′(t)) dt

oznacza długość krzywej α względem pseudometryki βD.
6



Obserwacja 1.2 ([Jar–Pfl 1993]). Dla obszaru D ⊂ Cn spełniającego warunek
(1.1), zachodzi

(a) βD(z;λX) = |λ|βD(z;X), z ∈ D,X ∈ Cn, λ ∈ C.
(b) βD(z;X1 +X2) ⩽ βD(z;X1) + βD(z;X2), z ∈ D,X1, X2 ∈ Cn.
(c) βD : D × Cn → R+ jest ciągła.
(d) bD : D ×D → R+ jest ciągła.
(e) Zachodzi wzór

βD(z;X) =
MD(z;X)√

kD(z)
, z ∈ D,X ∈ Cn,

gdzie

MD(z;X) := sup{|f ′(z)X| : f ∈ L2h(D), ∥f∥D = 1, f(z) = 0}, z ∈ D,X ∈ Cn.

(f) Niech G ⊂ Cn będzie obszarem, spełniającym warunek (1.1), oraz niech F :
D → G będzie odwzorowaniem biholomorficznym. Wtedy

βG(F (z);F ′(z)X) = βD(z;X), z ∈ D,X ∈ Cn,
bG(F (z), F (w)) = bD(z, w), z, w ∈ D.

(g) Jeżeli G jest obszarem w Cm, spełniającym warunek (1.1), to dla z1 ∈ D, z2 ∈ G
oraz X1 ∈ Cn, X2 ∈ Cm zachodzi

βD×G((z1, z2); (X1, X2)) =
√
β2D(z1;X1) + β2G(z2;X2).

(i) Zachodzą wzory:

βBn(z;X) =
√
n+ 1

(
∥X∥2

1− ∥z∥2
+
|⟨z,X⟩|2

(1− ∥z∥2)2

) 1
2

, z ∈ Bn, X ∈ Cn,

β∆(0,1)n(z;X) =
√

2
( n∑
j=1

|Xj |2

(1− |zj |2)2

) 1
2

, z ∈ ∆(0, 1)n, X ∈ Cn.

(j) Jeśli diamD ⩽ R < +∞, to

βD(z;X) ⩾ ∥X∥
R

, z ∈ D,X ∈ Cn,

bD(z1, z2) ⩾
∥z1 − z2∥

R
, z1, z2 ∈ D.

Warunek (1.1) nie zawsze jest spełniony. Jednak nawet w przypadku, gdy on zacho-
dzi, pozostaje jeszcze problem dodatniej określoności pseudometryki Bergmana oraz
oznaczoności pseudoodległości Bergmana.
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Definicja 1.3. Dodatnio określoną pseudometrykę Bergmana nazywamy metryką
Bergmana, a pseudoodległość Bergmana, spełniającą warunek bD(z, w) = 0 ⇐⇒ z =
w, z, w ∈ D — odległością Bergmana.

O obszarze D, dla którego zachodzi warunek (1.1) i ponadto βD jest metryką, mó-
wimy, że jest β–hiperboliczny.

Dla obszaru D rozważmy dwa warunki

∀ z ∈ D ∃ f ∈ L2h(D) : f(z) ̸= 0, (1.2)

∀ z ∈ D,X ∈ Cn \ {0} ∃ f ∈ L2h(D) : f(z) = 0, f ′(z)X ̸= 0. (1.3)

Obserwacje 1.1(d) oraz 1.2(e) pozwalają wyciągnąć następujące wnioski

Wniosek 1.4. Niech D ⊂ Cn będzie obszarem.
(a) Jądro Bergmana kD jest dodatnio określone w D wtedy i tylko wtedy, gdy za-
chodzi warunek (1.2).

(a) Jeżeli warunek (1.2) jest spełniony, to obszar D jest β–hiperboliczny wtedy i
tylko wtedy, gdy zachodzi warunek (1.3).

Zauważmy, że jeśli obszar D jest ograniczony, to obydwa warunki (1.2) i (1.3) są
spełnione.

Jednym z istotnych faktów dotyczących zachowania się funkcji Bergmana, jest na-
stępujące twierdzenie o lokalizacji.

Twierdzenie 1.5 ([Die–For–Her 1984], [Ohs 1984], por. [Jar–Pfl 1993]). Niech D ⊂
Cn będzie ograniczonym obszarem pseudowypukłym oraz niech z0 ∈ ∂D. Dla dowolnych
otwartych otoczeń U1 ⊂⊂ U2 punktu z0 istnieje stała C > 0 taka, że dla dowolnego
z ∈ V ∩U1, X ∈ Cn, gdzie V oznacza dowolną spójną składową zbioru D∩U2, zachodzi

(a) 1
CMV (z;X) ⩽MD(z;X) ⩽MV (z;X),

(b) 1
C kV (z) ⩽ kD(z) ⩽ kV (z),

(c) 1
CβV (z;X) ⩽ βD(z;X) ⩽ CβV (z;X).

Inne własności oraz przykłady jąder i metryk Bergmana Czytelnik znajdzie np. w
[Jar–Pfl 1993] i [Jar–Pfl 2004].

1.2. Wyczerpywalność i b–zupełność

Definicja 1.6. Mówimy, że obszar D ⊂ Cn jest zupełny w sensie Bergmana (lub
krótko b–zupełny), jeśli przestrzeń metryczna (D, bD) jest zupełna, tzn. każdy ciąg Cau-
chy’ego względem odległości Bergmana (lub krócej bD–ciąg Cauchy’ego) jest zbieżny w
topologii naturalnej w D.

Mówimy, że obszar D jest b–zupełny w punkcie z0 ∈ ∂D, jeśli nie istnieje bD–ciąg
Cauchy’ego zbieżny do z0 w topologii naturalnej.

Obszar D nazywamy wyczerpywalnym w punkcie z0 ∈ ∂D, jeżeli

lim
D∋z→z0

kD(z) = +∞. (1.4)
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Mówimy, że D jest wyczerpywalny, jeśli jest wyczerpywalny w każdym swoim punkcie
brzegowym.

W obszarze ograniczonym D ⊂ Cn, zbieżność w topologii naturalnej bD–ciągu Cau-
chy’ego jest równoznaczna z jego zbieżnością do pewnego punktu brzegowego D. W
związku z tym mamy następującą równoważność

Obserwacja 1.7. Obszar ograniczony D ⊂ Cn jest b–zupełny wtedy i tylko wtedy,
gdy jest b–zupełny w każdym swoim punkcie brzegowym.

Z punktu widzenia zupełności w sensie Bergmana warto zajmować się jedynie obsza-
rami pseudowypukłymi.

Twierdzenie 1.8 ([Bre 1955]). Każdy obszar b–zupełny jest pseudowypukły. Każdy
obszar wyczerpywalny jest również pseudowypukły.

Twierdzenie odwrotne nie jest prawdziwe. Kontrprzykładem jest trójkąt Hartogsa
D := {(z, w) ∈ C2 : |z| < |w| < 1} (zob. [Jar–Pfl 1993]), który nie jest b–zupełny,
lub zbiór {z ∈ C : 0 < |z| < 1} na płaszczyźnie zespolonej (nie jest ani b–zupełny, ani
wyczerpywalny).

Kobayashi postawił pytanie ([Kob 1959]):

Które obszary pseudowypukłe sa b–zupełne?

Sformułował również kryterium, które ciągle pozostaje najważniejszym narzędziem
w badaniu b–zupełności.

Twierdzenie 1.9 ([Kob 1959], [Kob 1962]). Niech D ⊂ Cn będzie obszarem speł-
niającym warunki (1.2) i (1.3) oraz niech F będzie gęstym podzbiorem L2h(D).
Załóżmy, że zachodzi warunek

dla dowolnego ciągu (zk)∞k=1 ⊂ D, niemającego punktu skupienia w D,
dla dowolnego f ∈ F istnieje podciąg (zkj )

∞
j=1 taki, że (1.5)

lim
j→∞

|f(zkj )|√
kD(zkj )

= 0.

Wtedy D jest b–zupełny.

Ohsawa ([Ohs 1984]) zauważył, że prawdziwa jest lokalna wersja powyższego kry-
terium, tzn. dla dowolnego punktu z0 ∈ ∂D wystarczy sprawdzić warunek (1.5) dla
zbioru D ∩ U , gdzie U jest pewnym otwartym otoczeniem z0.

W dalszej części pracy będziemy posługiwać się głównie pojęciem b–zupełności w
punkcie, dlatego sformułujemy Twierdzenie 1.9 w innej postaci.

Twierdzenie 1.10. Niech D ⊂ Cn będzie pseudowypukłym obszarem ograniczonym
i niech z0 ∈ ∂D. Załóżmy, że F jest gęstym podzbiorem L2h(D), oraz że zachodzi nastę-
pujący warunek

dla dowolnego ciągu (zk)∞k=1 ⊂ D, zbieżnego do z0, i dla dowolnego f ∈ F
istnieje podciąg (zkj )

∞
j=1 taki, że (1.6)

lim
j→∞

|f(zkj )|√
kD(zkj )

= 0.

9



Wtedy D jest b–zupełny w punkcie z0.

Dowód. Skorzystamy z następującego lematu

Lemat 1.11 ([Pfl 1982]). Niech D ⊂ Cn będzie ograniczonym obszarem pseudowypu-
kłym oraz niech (zk)∞k=1 ⊂ D będzie ciągiem Cauchy’ego względem odległości Bergmana
bD, zbieżnym do z0 ∈ ∂D.
Wtedy istnieje funkcja f ∈ L2h(D), ∥f∥ = 1 oraz ciąg (λk)∞k=1 ⊂ C, |λk| = 1, taki, że

λk
KD(·, zk)√
kD(zk)

L2h(D)−→ f, (k →∞).

Przypuśćmy, żeD nie jest b–zupełny w punkcie z0. Istnieje zatem bD–ciąg Cauchy’ego
(zk)∞k=1 ⊂ D zbieżny do z0. Weźmy funkcję f z Lematu 1.11 oraz funkcję g ∈ F taką,
że ∥f − g∥D < 1

2 . Z własności jądra Bergmana mamy następującą nierówność

|g(zkj )|√
kD(zkj )

⩾
|f(zkj )|√
kD(zkj )

− ∥f − g∥D ⩾
|f(zkj )|√
kD(zkj )

− 1
2
,

gdzie (zkj )
∞
j=1 jest podciągiem z warunku (1.6). Przechodząc z j do nieskończoności i

stosując warunek (1.6) do wyrażenia z lewej strony nierówności oraz Obserwację 1.1(d)
do ilorazu z prawej, otrzymujemy sprzeczność. □

Kobayashi postawił również hipotezę, że twierdzenie odwrotne do Twierdzenia 1.9
jest prawdziwe. Okazała się ona błędna — wynika to z poniższego twierdzenia.

Twierdzenie 1.12 ([Zwo 2001]). Istnieje ograniczony b–zupełny obszar (1) D ⊂ C,
dla którego zachodzi

lim inf
z→∂D

kD(z) < +∞.

Uwaga 1.13. Warunek (1.5) w Twierdzeniu 1.9 można zastąpić następującym (zob.
[Bło 2004])

lim sup
z→∂D

|f(z)|√
KD(z)

< ∥f∥D.

Dotychczas nie wiadomo, czy po takiej modyfikacji twierdzenie odwrotne jest prawdziwe.

Trzy pojęcia związane z kategorią obszarów pseudowypukłych — hiperwypukłość,
wyczerpywalność i b–zupełność — stały się przedmiotem intensywnych badań w ostat-
nich kilkudziesięciu latach. Znamy dzisiaj wszystkie związki, jakie między nimi zacho-
dzą.

(1)Obszar D podany jest efektywnie:

D := ∆(0, 1) \
( ∞∪
j=2

j5−1∪
k=0

∆(xj,k, rj) ∪ {0}
)
,

gdzie xj,k = 1
j5

exp
( 2πik
j5

)
oraz rj := exp(−j19) dla j ⩾ 2, k = 0, . . . , j5 − 1.
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Hiperwypukłość a wyczerpywalność.

Twierdzenie 1.14 ([Ohs 1993]). Ograniczone obszary hiperwypukłe w Cn są wy-
czerpywalne.

Twierdzenie odwrotne nie jest prawdziwe (kontrprzykładem jest np. trójkąt Hartogsa
albo pewne obszary typu Zalcmana — zob. Twierdzenie 1.39).

Dla obszarów na płaszczyźnie zespolonej, których dopełnienie nie jest zbiorem po-
larnym, klasyczna i zespolona funkcja Greena są sobie równe. Z ich własności (zob.
Dodatek) wynika

Obserwacja 1.15. Niech D ⊂ C będzie obszarem ograniczonym. D jest hiperwypu-
kły wtedy i tylko wtedy, gdy jest regularny (gdy każdy jego punkt brzegowy jest punktem
regularnym).

Mamy następujące twierdzenie, dotyczące wyczerpywalności w punkcie.

Twierdzenie 1.16 ([Pfl–Zwo 2002]). Niech D ⊂ C będzie obszarem ograniczonym
oraz niech z0 ∈ ∂D. Jeżeli z0 jest punktem regularnym, to D jest wyczerpywalny w z0.

Wyczerpywalność w punkcie nie implikuje regularności (zob. Twierdzenie 1.39).

Wyczerpywalność a b–zupełność.

Ogólnie w Cn dla n > 1 wyczerpywalność nie implikuje b–zupełności (np. trójkąt
Hartogsa). Inaczej jest na płaszczyźnie zespolonej.

Twierdzenie 1.17 ([Hed 1972], [Chen 2000]). Niech D będzie obszarem ograniczo-
nym w C. Wtedy dla każdego punktu z0 ∈ ∂D zbiór funkcji holomorficznych w D, które
są ograniczone w pewnym otoczeniu z0, jest gęsty w L2h(D).

Z powyższego twierdzenia wynika następujący wniosek:

Twierdzenie 1.18 ([Chen 2000]). Niech D ⊂ C będzie obszarem ograniczonym oraz
niech z0 ∈ ∂D. Jeśli D jest wyczerpywalny w punkcie z0, to D jest również b–zupełny
w z0.
W szczególności, ograniczone obszary wyczerpywalne w C są b–zupełne.

Wynik ten, jednakże przy dodatkowym założeniu, można uogólnić na obszary w Cn.

Twierdzenie 1.19 ([Bło 2000]). Niech D ⊂ Cn będzie pseudowypukłym obszarem
ograniczonym spełniającym następujący warunek:

dla dowolnego z0 ∈ ∂D istnieje baza otoczeń (Uj)∞j=1 punktu z0
taka, że D ∪ Uj jest pseudowypukły dla każdego j ⩾ 1. (1.7)

Wtedy, jeśli D jest wyczerpywalny, to jest również b–zupełny.

Zauważmy, że warunek (1.7) jest zawsze spełniony dla obszarów płaskich.

Z zupełności w sensie Bergmana nie wynika natomiast wyczerpywalność, nawet dla
obszarów tłustych (takich, że D = intD) na płaszczyźnie (zob. [Zwo 2001] oraz Twier-
dzenie 1.39).
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Hiperwypukłość a b–zupełność.

Jednym z najogólniejszych i najważniejszych wyników jest poniższe twierdzenie udo-
wodnione niezależnie przez Herborta oraz Błockiego i Pfluga.

Twierdzenie 1.20 (zob. [B lo–Pfl 1998], [Her 1999]). Ograniczone obszary hiperwy-
pukłe w Cn są b–zupełne.

Kluczową rolę w dowodzie tego twierdzenia odgrywają oszacowania pochodzące z
teorii pluripotencjału i dotyczące zbiorów podpoziomicowych zespolonej funkcji Greena
(zob. Definicja D.30).

Rozważmy następujący warunek dla funkcji Greena pseudowypukłego obszaru ogra-
niczonego D ⊂ Cn z biegunem w w ∈ D:

lim
w→∂D

L2n({z ∈ D : gD(w, z) < −1}) = 0. (1.8)

Warunek (1.8) jest spełniony w przypadku, gdy D jest ograniczonym obszarem hi-
perwypukłym ([Bło–Pfl 1998], [Her 1999]) i implikuje zarówno wyczerpywalność, jak i
b–zupełność ([Chen 1999], [Her 1999]). Żadna z implikacji odwrotnych nie jest praw-
dziwa (zob. [Her 1999] oraz [Zwo 2000a]).(2)

Z kolei na płaszczyźnie zespolonej, z Twierdzenia 1.16 i Twierdzenia 1.18 wynika

Twierdzenie 1.21. Niech D ⊂ C będzie obszarem ograniczonym i niech z0 ∈ ∂D
będzie punktem regularnym. Wtedy D jest b–zupełny w z0.

Z uwag dotyczących związku b–zupełności i wyczerpywalności wynika, że istnieją
ograniczone obszary pseudowypukłe i b–zupełne, ale nie hiperwypukłe, np. pewne ob-
szary typu Zalcmana ([Chen 1999], zob. Twierdzenie 1.39). Herbort ([Her 1999]) podał
inny przykład takiego obszaru, będący pseudowypukłym obszarem Reinhardta.

Skoro problem zupełności został rozwiązany w klasie ograniczonych obszarów hiper-
wypukłych, więc naturalne jest skupienie się na obszarach niehiperwypukłych lub (i)
nieograniczonych.

Wspomnianymi dwiema klasami obszarów, które obejmują pewne obszary b–zupełne,
ale niehiperwypukłe, zajmiemy się w innych częściach pracy (obszarami Reinhardta —
w Rozdziale 1.3 i Rozdziale IV, obszarami typu Zalcmana — w Rozdziale III).

Zacytujmy jeszcze dwa wyniki, które dotyczą zupełności w sensie Bergmana obszarów
niekoniecznie hiperwypukłych.

Twierdzenie 1.22 ([Chen–Zhang 2000]). Niech D ⊂ Cn będzie pseudowypukłym
obszarem ograniczonym, którego brzeg jest lokalnie wykresem pewnej funkcji ciągłej.
Wtedy D jest b–zupełny.

Twierdzenie 1.23 ([Jar–Pfl–Zwo 2000]). Ograniczone pseudowypukłe obszary zba-
lansowane w Cn są b–zupełne.(3)

Pomimo dużego zainteresowania problematyką związaną z funkcjami Bergmana, nie-
wiele jest wyników dotyczących obszarów nieograniczonych (zob. [Chen–Zhang 2002],
[Chen–Kam–Ohs 2004]). Oto niektóre z nich:

(2)Dla pseudowypukłych ograniczonych obszarów Reinhardta w C2 warunek (1.8) jest równoważny
b–zupełności (zob. [Zwo 2000a]).
(3)Zbalansowane obszary pseudowypukłe, dla których funkcjonał Minkowskiego nie jest ciągły, nie

są hiperwypukłe.

12



Twierdzenie 1.24 ([Chen–Zhang 2002]). Niech D ⊂ Cn będzie obszarem pseudo-
wypukłym.(4) Jeśli zachodzi warunek:

dla dowolnego w ∈ D istnieje a > 0 takie, że

zbiór {z ∈ D : gD(w, z) < −a} jest relatywnie zwarty w D,
(1.9)

to D posiada metrykę Bergmana.
Jeśli, ponadto,

dla dowolnego ciągu punktów (zk)∞k=1 ⊂ D, niemającego punktu skupienia w D,

istnieją podciąg (zkj )
∞
j=1 i liczba a > 0 takie, że

dla dowolnego zbioru zwartego K

zachodzi {z ∈ D : gD(zkj , z) < −a} ⊂ D \K, dla dostatecznie dużych j,
(1.10)

to D jest zupełny w sensie Bergmana.

Wniosek 1.25 ([Chen–Zhang 2002]). Niech D będzie obszarem w Cn. Jeśli istnieje
ujemna ściśle plurisubharmoniczna funkcja wyczerpująca na D, to D jest b–zupełny.

Twierdzenie 1.26 ([Chen–Kam–Ohs 2004]). Niech

D := {(z, w) ∈ Cn × C : Imw > ρ(z)},
gdzie ρ jest nieujemną funkcją plurisubharmoniczną na Cn taką, że lim|z|→∞ ρ(z) =
+∞.
Wtedy kD > 0 oraz D jest b–zupełny.

Na uwagę zasługuje również fakt, że zupełność w sensie Bergmana można badać
lokalnie.

Twierdzenie 1.27 ([Nik 2003]). Niech D ⊂ C będzie obszarem, którego dopełnienie
nie jest zbiorem polarnym.
Jeżeli dla każdego punktu z0 ∈ ∂D istnieje otwarte otoczenie U takie, że każda skła-

dowa spójna zbioru D ∩ U jest b–zupełna, to D jest również b–zupełny.
Jeżeli D jest b–zupełny, to dla dowolnego koła ∆, zbiory D ∩∆ oraz D ∩ (C \∆) są

b–zupełne.

Powyżej zakładamy, że punkt ∞ jest punktem brzegowym dowolnego obszaru nie-
ograniczonego.

Przyjrzyjmy się teraz bliżej własności wyczerpywalności obszarów. Poza faktem, że
hiperwypukłość oraz warunek (1.8) implikują wyczerpywalność w przypadku obszarów
ograniczonych, mamy jeszcze jedno ogólne twierdzenie w Cn.
Twierdzenie 1.28 ([Pfl 1975], zob. [Jar–Pfl 1993]). Niech D ⊂ Cn będzie ograni-

czonym obszarem pseudowypukłym. Załóżmy, że punkt z0 ∈ ∂D spełnia następujący
„warunek zewnętrznego stożka” („outer cone condition”)

istnieją liczby r ∈ (0, 1], a ⩾ 1 oraz ciąg (wk)∞k=1 ⊂ Cn \D
takie, że lim

k→∞
wk = z0 oraz D ∩B(wk, r∥wk − z0∥a) = ∅.

Wtedy D jest wyczerpywalny w punkcie z0.

(4)Oryginalne twierdzenie jest sformułowane ogólniej — dla rozmaitości Steina.
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Wyczerpywalność i b–zupełność a teoria potencjału.

Dla ograniczonych obszarów na płaszczyźnie zespolonej mamy pełną charakteryzację
wyczerpywalności w języku teorii potencjału.

Wprowadźmy najpierw następującą funkcję potencjałową dla obszaru D ⊂ C (zob.
[Zwo 2001] i [Pfl–Zwo 2003]):

γD(z) :=
∫ 1
4

0

dδ

δ3(− log cap (∆(z, δ) \D))
, z ∈ C, (1.11)

gdzie capB oznacza pojemność logarytmiczną zbioru borelowskiego B ⊂ C (zob.
Dodatek).

Obserwacja 1.29. Niech D będzie obszarem ograniczonym w C.
(a) Funkcja γD jest ciągła na D i półciągła z dołu na D. Ponadto γD ≡ +∞ na

C \D.
(b) Zachodzą następujące oszacowania:

1
8

∞∑
k=3

22k

− log cap (Ak(z) \D)
⩽ γD(z) ⩽ 8

∞∑
k=2

22k

− log cap (Ak(z) \D)
, z ∈ D,

gdzie

Ak(z) := {w ∈ C :
1

2k+1
⩽ |w − z| ⩽ 1

2k
}.

Charakteryzacja wyczerpywalności (przedstawiona poniżej) dla pewnego typu obsza-
rów płaskich (np. obszarów typu Zalcmana) przyjmuje prostszą postać warunku typu
Wienera (por. Twierdzenie D.26 oraz Twierdzenia 1.38 i 1.39).

Twierdzenie 1.30 ([Zwo 2001]). Niech D będzie obszarem ograniczonym w C i
niech z0 ∈ ∂D. Wtedy następujące warunki są równoważne:

(a) limD∋z→z0 γD(z) = +∞.
(b) D jest wyczerpywalny w z0.

O bliskim związku funkcji γ oraz jądra Bergmana świadczy również poniższe twier-
dzenie, z którego, w szczególności, wynika kryterium na wyczerpywalność.

Twierdzenie 1.31 ([Pfl–Zwo 2003]). Ustalmy d > 1. Istnieje stała C > 0 taka, że:

(a) Dla dowolnego obszaru D ⊂ C takiego, że diamD < d zachodzi

CγD(z) ⩽ kD(z), z ∈ D.

(b) Dla dowolnego obszaru D ⊂ C takiego, że 1d < diamD < d zachodzi

kD(z) ⩽ C max{1, γD(z)(log γD(z))2}, z ∈ D.
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Związek wyczerpywalności z teorią potencjału (Twierdzenie 1.30) oraz charakteryza-
cja b–zupełnych obszarów typu Zalcmana ([Juc 2004]), uzyskana przy użyciu podobnych
metod, skłaniają do podjęcia próby charakteryzacji b–zupełności dowolnego obszaru na
płaszczyźnie zespolonej.

Niech D będzie obszarem w C. Zdefiniujmy funkcję

γ̂D(z) :=
∫ 1
4

0

dδ

δ2
√
− log cap

(
∆(z, δ) \D

) , z ∈ C.

Dla obszaru D ⊂ C, punktu z0 ∈ D oraz dla krzywej α : [0, 1] → D rozważmy
następujący warunek:

α : [0, 1)→ D klasy C1, α′(t) ̸= 0, t ∈ [0, 1), lim
t→1

α(t) = z0,

∫ 1
0
|α′(t)| dt < +∞.

(1.12)
W Rozdziale II udowodnimy następujące twierdzenia:

Twierdzenie 1.32 (Twierdzenie 2.3). Niech D ⊂ C będzie obszarem ograniczo-
nym oraz niech z0 ∈ ∂D. Jeśli obszar D nie jest b–zupełny w punkcie z0, to istnieje
krzywa α : [0, 1]→ D taka, że krzywa α∣∣[0,1) spełnia warunek (1.12), oraz:

istnieje stała M > 0 taka, że γ̂D(α(t)) ⩽M dla każdego t ∈ [0, 1]. (1.13)

Twierdzenie 1.33 (Wniosek 2.6). Jeśli D ⊂ C jest obszarem ograniczonym ta-
kim, że γ̂D(z0) = +∞ dla punktu z0 ∈ ∂D, to D jest b–zupełny w punkcie z0.
W szczególności, jeśli γ̂D(z) = +∞ dla wszystkich z ∈ ∂D, to obszar D jest b–zupeł-

ny.

Twierdzenie odwrotne do Twierdzenia 1.33 nie jest prawdziwe. Co więcej, z b–zupeł-
ności obszaru D w z0 nie wynika, że γ̂D(z0) = +∞, ani nawet limD∋z→z0 γ̂D(z) = +∞
(por. kryterium na wyczerpywalność w Twierdzeniu 1.30). W Przykładzie 2.7 kon-
struujemy b–zupełny obszar D taki, że dla punktu 0 ∈ ∂D mamy γ̂D(0) < +∞ i
lim infD∋z→0 γ̂D(z) < +∞.

Nie wiadomo, czy twierdzenie odwrotne do Twierdzenia 1.32 jest prawdziwe. Jed-
nakże, przy dodatkowym założeniu dla obszaru D i punktu z0, można udowodnić jego
słabszą wersję.

Twierdzenie 1.34 (Twierdzenie 2.8). Niech D ⊂ C będzie obszarem ograniczo-
nym oraz z0 ∈ ∂D. Załóżmy, że istnieje krzywa α, która spełnia warunek (1.12) oraz
dwa poniższe:

istnieje stała θ ∈ (0, 1] taka, że dist (α(t), ∂D) ⩾ θ|α(t)− z0|, t ∈ [0, 1), (1.14)

istnieje stała R > 0 taka, że
∫
α−1(Aj(z0))

|α′(t)| dt ⩽ R

2j
, j ⩾ 1. (1.15)

Wtedy, jeśli γ̂D(z0) < +∞, to D nie jest b–zupełny w punkcie z0.

Warunek (1.15) w powyższym twierdzeniu wydaje się być jedynie technicznym za-
łożeniem. Natomiast warunku (1.14) nie można zastąpić warunkiem słabszym postaci
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dist (α(t), ∂D) ⩾ θ|α(t) − z0|a, gdzie a > 1 — pokazuje to Przykład 2.9. Oczywiście,
nie można oczekiwać, że warunek (1.14) okaże się warunkiem koniecznym na to, aby
obszar D nie był zupełny w punkcie z0.(5) Jednakże powyższe twierdzenia pozwalają
na wysunięcie pewnej hipotezy:

Hipoteza. Niech D ⊂ C będzie obszarem ograniczonym oraz niech z0 ∈ ∂D. Wtedy
następujące warunki są równoważne:

(a) Obszar D nie jest b–zupełny w punkcie z0.
(b) Istnieje krzywa α : [0, 1)→ D spełniająca warunki (1.12) i (1.13).

Jednym z narzędzi, użytych w Twierdzeniach 1.30–1.34, jest Lemat 1.35.
Wprowadźmy najpierw kolejny obiekt związany z teorią potencjału. Dla zbioru zwar-

tego K ⊂ C, zdefiniujmy następującą funkcję holomorficzną na C \K

fK(ζ) :=


∫
K

dµK(λ)
ζ − λ

, jeśli capK > 0

0, jeśli capK = 0
, ζ ∈ C \K, (1.16)

gdzie µK jest miarą równowagi zbioru K (zob. Dodatek).

Lemat 1.35 ([Zwo 2001] i [Pfl–Zwo 2003]). Ustalmy liczbę d > 1. Istnieje stała
C > 0 taka, że dla dowolnego obszaru ograniczonego D ⊂ C takiego, że 0 ∈ D oraz
diamD < d i dla dowolnego zbioru zwartego K ⊂ ∆(0, 14 ) rozłącznego z D, zachodzi
nierówność

∥fK∥2D ⩽ −C log capK. (1.17)

Uwaga 1.36. Założenie w powyższym lemacie, że 0 ∈ D można zastąpić przez 0 ∈
∂D.

Rzeczywiście, możemy to zrobić, ponieważ przesuwając obszar D o pewien dosta-
tecznie mały wektor, uzyskamy 0 ∈ D, a zbiór K nadal będzie zawarty w ∆(0, 14 ).
Natomiast na samą nierówność (1.17) z tezy translacja nie ma żadnego wpływu.

Obszary typu Zalcmana.

Definicja 1.37. Obszarami typu (L) w sensie Zalcmana lub, krócej, obszarami typu
Zalcmana albo obszarami typu (L) będziemy nazywać obszary postaci:

D := ∆(0, 1) \
( ∞∪
k=1

∆(xk, rk) ∪ {0}
)
,

gdzie xk > xk+1 > 0, limk→+∞ xk = 0, ∆(xk, rk) ⊂ ∆(0, 1) oraz ∆(xk, rk)∩∆(xl, rl) =
∅, dla k, l ⩾ 1, k ̸= l.

Obszary te były badane w kontekście zupełności w sensie Bergmana (zob. [Ohs 1993],
[Chen 1999], [Chen 2001]). Pflug ([Pfl 2000]) postawił pytanie:
Które obszary typu (L), spełniające warunek xk = 1

2k są b–zupełne?
W Rozdziale III odpowiadamy na to pytanie, podając następujące ogólne charakte-

ryzacje b–zupełności i wyczerpywalności obszarów typu (L).

(5)Jeżeli usuniemy z obszaru D pewien zbiór polarny P (np. przeliczalny zbiór gęsty), to nie wpły-
nie to na b–zupełność w punkcie z0, ponieważ kD(z) = kD\P (z), z ∈ D \ P . Funkcje całkowalne z
kwadratem przedłużają się przez zbiory polarne (zob. [Pfl–Zwo 2002]).
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Twierdzenie 1.38 (Wniosek 3.3). Niech D będzie obszarem typu (L). Wtedy:
(a) D jest wyczerpywalny wtedy i tylko wtedy, gdy

γD(0) = +∞.

(b) D jest b–zupełny wtedy i tylko wtedy, gdy

γ̂D(0) = +∞.

Twierdzenie 1.39 (Twierdzenie 3.7, por. również [Juc 2004]). Niech D ⊂ C
będzie obszarem typu (L) spełniającym następujący warunek:

istnieje liczba Θ ∈ (0, 1) taka, że
xk+1
xk
⩽ Θ dla każdego k ⩾ 1.

Wtedy:
(a) D jest wyczerpywalny wtedy i tylko wtedy, gdy

∞∑
k=1

−1
x2k log rk

= +∞.

(b) D jest b–zupełny wtedy i tylko wtedy, gdy

∞∑
k=1

1
xk
√
− log rk

= +∞.

(c) Jeśli ponadto istnieje Θ′ > 0 takie, że Θ′ ⩽ xk+1xk , (k ⩾ 1), to D jest hiperwypukły
wtedy i tylko wtedy, gdy

∞∑
k=1

log xk
log rk

= +∞.

1.3. Pseudowypukłe obszary Reinhardta

Definicja 1.40. Obszarem Reinhardta nazywamy obszar D ⊂ Cn taki, że dla do-
wolnego z ∈ D, θj ∈ R, j = 1, . . . , n zachodzi (eiθ1z1, . . . , eiθnzn) ∈ D.

Dla punktu z ∈ Cn∗ , oznaczmy log |z| := (log |z1|, . . . , log |zn|) ∈ Rn oraz logD :=
{log |z| : z ∈ D ∩ Cn∗}.

Z definicji obszarów Reinhardta wynika, że odwzorowanie

{obszary Reinhardta w Cn} ∋ D 7→ logD ∈ {obszary w Rn}

jest bijekcją.
Oznaczmy dodatkowo

Vj := {z ∈ Cn : zj = 0}, j = 1, . . . , n.

Pseudowypukłe obszary Reinhardta scharakteryzowane są w następujący sposób:
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Twierdzenie 1.41 (zob. [Vla 1966], [Jak–Jar 1998]). Obszar Reinhardta D ⊂ Cn
jest pseudowypukły wtedy i tylko wtedy, gdy logD jest wypukły oraz dla dowolnego
j = 1, . . . , n i λ ∈ ∆(0, 1)

jeśli D ∩ Vj ̸= ∅ i (z′, zj , z′′) ∈ D, to (z′, λzj , z′′) ∈ D.

Dodatkowo mamy następujące twierdzenie dotyczące hiperwypukłości:

Twierdzenie 1.42 ([Zwo 2000b], [Zwo 2000a], por. [Car–Ceg–Wik 1999]). Niech
D ⊂ Cn będzie pseudowypukłym obszarem Reinhardta. Wtedy następujące warunki są
równoważne:

(a) D jest ograniczony oraz dla każdego j = 1, . . . , n

jeśli D ∩ Vj ̸= ∅, to D ∩ Vj ̸= ∅.

(b) D jest hiperwypukły.

Dla wypukłego zbioru Ω ⊂ Rn oraz punktu a ∈ Ω zdefiniujmy

C(Ω, a) := {v ∈ Rn : a+ R+v ⊂ Ω}.

Wiadomo, że zbiór C(Ω, a) jest domkniętym stożkiem wypukłym o wierzchołku w
punkcie 0 ∈ Rn. Ponadto, jego definicja nie zależy od wyboru punktu a ∈ Ω.

Podobnie, dla dowolnego pseudowypukłego obszaru Reinhardta D ⊂ Cn zdefiniujmy
stożki:

C(D) := {v ∈ Rn : a+ R+v ⊂ logD},

C̃(D) := {v ∈ Rn : istnieje lim
t→+∞

exp(a+ tv) ∈ D},

C′(D) := C(D) \ C̃(D).

Definicje nie zależą od punktu a ∈ logD, ponieważ, zgodnie z Twierdzeniem 1.41, logD
jest wypukły.

Możemy teraz sformułować twierdzenie — charakteryzację ograniczonych b–zupeł-
nych obszarów Reinhardta.

Twierdzenie 1.43 ([Zwo 1999a], [Zwo 2000a]). Niech D ⊂ Cn będzie ograniczonym
pseudowypukłym obszarem Reinhardta. Wtedy następujące warunki są równoważne:

(a) D jest b–zupełny.
(b) C′(D) ∩Qn = ∅.

W Rozdziale IV udowodnimy analogon tego twierdzenia dla nieograniczonych obsza-
rów Reinhardta w C2.

Twierdzenie 1.44 (Twierdzenie 4.1). Niech D ⊂ C2 będzie pseudowypukłym
obszarem Reinhardta (niekoniecznie ograniczonym) takim, że logD nie zawiera linii
prostych. Wtedy następujące warunki są równoważne:

(a) D jest b–zupełny.
(b) C′(D) ∩Q2 = ∅.

18



Będziemy potrzebować kilku faktów, dotyczących przestrzeni funkcji holomorficz-
nych całkowalnych z kwadratem.

Dla obszaru Reinhardta D ⊂ Cn zdefiniujmy:

E = E(D) := {zα ∈ L2h(D) : α ∈ Zn},
A = A(D) := {α ∈ Zn : zα ∈ L2h(D)},

J(D) := {j ∈ {1, . . . , n} : Vj ∩D ̸= ∅}.

Obserwacja 1.45. Dla pseudowypukłego obszaru Reinhardta D ⊂ Cn, przestrzeń
Span E(D), czyli najmniejsza podprzestrzeń liniowa, zawierająca zbiór E(D), jest gęsta
w L2h(D).

Lemat 1.46 ([Zwo 1999a], [Zwo 2000a]). Niech D ⊂ Cn będzie pseudowypukłym
obszarem Reinhardta oraz niech α ∈ Zn. Wtedy

zα ∈ L2h(D) ⇐⇒ ∀ v ∈ C(D) \ {0} : ⟨α+ 1, v⟩ < 0.

Z powyższego lematu wynika, że jeśli obszar logD ⊂ Rn zawiera linię prostą, to
przestrzeń L2h(D) jest trywialna. Przekonamy się, że jest to warunek równoważny.

Lemat 1.47 ([Jar–Pfl 1985]). Niech C będzie otwartym stożkiem w Rn niezawierają-
cym linii prostych. Wtedy istnieje niepusty otwarty zbiór U ⊂ Rn taki, że dla dowolnego
u ∈ U

C ⊂ {x ∈ Rn : ⟨x, u⟩ < 0}.
Z Obserwacji 1.45 oraz z Lematu 1.46 i Lematu 1.47 można wyciągnąć natychmia-

stowy wniosek:

Obserwacja 1.48. Niech D ⊂ Cn będzie pseudowypukłym obszarem Reinhardta.
Zbiór logD zawiera linię prostą wtedy i tylko wtedy, gdy L2h(D) = {0}.
W szczególności, jeśli logD nie zawiera żadnej linii prostej, to zbiory E(D) i A(D)

są niepuste.

Wprowadźmy rodzinę specjalnych odwzorowań algebraicznych w Cn.
Dla α ∈ Zn i dla z ∈ Cn takich, że zj ̸= 0, gdy αj < 0, zdefiniujmy

zα := zα11 . . . zαnn .

Dla A = [Ajk]j,k=1,...,n ∈ Zn×n, zdefiniujmy odwzorowanie:

ΦA(z) := (zA
1
, . . . , zA

n

),

gdzie z ∈ Cn jest takie, że zA
j

jest dobrze określone dla j = 1, . . . , n (Aj oznacza tu
j–ty wiersz macierzy A).

Obserwacja 1.49 ([Zwo 2000a]). Niech A ∈ Zn×n. Odwzorowanie ΦA : Cn∗ → Cn∗
jest biholomorfizmem wtedy i tylko wtedy, gdy | detA| = 1.

Będą nas interesować tylko te odwzorowania algebraiczne, które spełniają warunek
| detA| = 1 lub równoważny:

A−1 ∈ Zn×n, oraz detA ̸= 0.

Takie odwzorowania tworzą grupę ze względu na składanie.
Przypomnijmy definicję pseudoodległości Carathéodory’ego (zob. [Jar–Pfl 1993]).
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Definicja 1.50. Dla dowolnego obszaru D ⊂ Cn oraz punktów z, w ∈ D, niech

cD(z, w) := sup{p(f(z), f(w)) : f ∈ O(D,∆(0, 1))},

gdzie

p(µ, ν) := tanh−1
∣∣∣∣ µ− ν1− µν

∣∣∣∣, µ, ν ∈ ∆(0, 1),

jest odległością Poincarégo.
Mówimy, że obszar D ⊂ Cn jest c–hiperboliczny, jeśli cD(z, w) > 0 dla z ̸= w, z, w ∈

D.

Podamy teraz charakteryzację c–hiperbolicznych obszarów Reinhardta.

Twierdzenie 1.51 (por. [Zwo 2000a]). Niech D ⊂ Cn będzie pseudowypukłym ob-
szarem Reinhardta. Wtedy następujące warunki są równoważne:

(a) D jest c–hiperboliczny.
(b) Każde odwzorowanie holomorficzne F : C→ D jest stałe.
(c) logD nie zawiera linii prostych,

D ∩ Vj jest albo pusty albo c–hiperboliczny (rozpatrywany jako obszar w Cn−1).
(d) D jest algebraicznie biholomorficzny z ograniczonym obszarem Reinhardta
(tzn. istnieje A ∈ Zn×n, | detA| = 1, takie, że ΦA(D) jest ograniczony oraz
ΦA∣∣D jest biholomorfizmem na obraz).

Z powyższej charakteryzacji oraz z Twierdzenia 1.43 wynika następujące

Twierdzenie 1.52 (Twierdzenie 4.2). Niech D ⊂ Cn będzie pseudowypukłym
c–hiperbolicznym obszarem Reinhardta. Wtedy następujące warunki są równoważne:

(a) D jest b–zupełny.
(b) C′(D) ∩Qn = ∅.
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ROZDZIAŁ II

ZUPEŁNOŚĆ OBSZARÓW W C

Dotychczasowe wyniki badań w zakresie funkcji Bergmana i zupełności w sensie
Bergmana dowodzą ścisłego związku tych pojęć z teorią potencjału na płaszczyźnie
zespolonej i teorią pluripotencjału w Cn. Wspomnijmy tu jedynie najbardziej ogólne
rezultaty — hiperwypukłość implikuje zarówno wyczerpywalność (Twierdzenie 1.14) jak
i b–zupełność (Twierdzenie 1.21) w klasie ograniczonych obszarów w Cn, a na płaszczyź-
nie zespolonej istnieje pełna charakteryzacja wyczerpywalności za pomocą kryterium
typu Wienera (Twierdzenie 1.30). Bardziej szczegółowa lista wyników znajduje się w
Rozdziale I.

Dzięki szacowaniom wywodzącym się z teorii potencjału (uzyskanym przy użyciu
metod podobnych do tych z pracy [Zwo 2002]), udało się odpowiedzieć na pytanie
Pfluga, dotyczące klasyfikacji b–zupełnych obszarów typu Zalcmana oraz podać inny
kontrprzykład do hipotezy Kobayashiego ([Juc 2004]). W naturalny sposób pojawiło
się zatem pytanie o całkowite rozwiązanie problemu charakteryzacji płaskich obszarów
b–zupełnych. Udało się nam uogólnić rezultaty z pracy [Juc 2004] — przedstawiamy po-
niżej pewne warunki wystarczające (Twierdzenie 2.3, Wniosek 2.6) i konieczne (Twier-
dzenie 2.8) na b–zupełność obszaru ograniczonego w jego punkcie brzegowym. Niestety,
do tej pory nie udało się znaleźć warunku równoważnego. Jednak wspomniane wyniki
częściowe oraz inne rezultaty zebrane w tym rozdziale, przyczyniają się do zrozumienia
problemu i pozwalają na sformułowanie pewnej hipotezy (Hipoteza 2.10).

Wprowadźmy najpierw funkcję potencjałową określoną na C, która będzie odgrywać
istotną rolę w dalszych rozważaniach.

Definicja 2.1. Niech D będzie obszarem w C. Zdefiniujmy:

γ̂D(z) :=
∫ 1
4

0

dδ

δ2
√
− log cap

(
∆(z, δ) \D

) , z ∈ C. (2.1)

Funkcja γ̂D jest modyfikacją funkcji γD (zob. (1.11)) wprowadzonej w [Zwo 2002].
Posiada też podobne własności (por. Obserwacja 1.29).

Obserwacja 2.2. Niech D ⊂ C będzie obszarem ograniczonym. Wtedy:
(a) γ̂D(z) < +∞ dla z ∈ D oraz γ̂D(z) = +∞ dla z ∈ C \D.
(b) Funkcja γ̂D jest półciągła z dołu na C i ciągła na D.
(c) Zachodzą następujące oszacowania dla z ∈ D

1
4

∞∑
j=3

2j√
− log cap

(
Aj(z) \D

) ⩽ γ̂D(z) ⩽ 4
∞∑
j=2

2j√
− log cap

(
Aj(z) \D

) , (2.2)
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gdzie

Aj(z) := {w ∈ C :
1

2j+1
⩽ |w − z| ⩽ 1

2j
}.

(d) Jeżeli γ̂D(z) < +∞, to również γD(z) < +∞.
(e) Jeżeli r > 1, to dla z ∈ C

1
r
γ̂D(z)− f(z) ⩽ γ̂rD(rz) ⩽ 1

r

√
log 4r
log 4

γ̂D(z), (2.3)

gdzie f jest nieujemną i ciągłą funkcją na C.
(f) Jeżeli G ⊂ C jest obszarem ograniczonym takim, że D ⊂ G, to γ̂D(z) ⩾ γ̂G(z)
dla z ∈ C.

Niech D będzie obszarem ograniczonym w C oraz niech z0 ∈ D. Rozważmy nastę-
pujący warunek dla krzywej α : [0, 1]→ D:

α : [0, 1)→ D klasy C1, α′(t) ̸= 0, t ∈ [0, 1), lim
t→1

α(t) = z0,

∫ 1
0
|α′(t)| dt < +∞.

(2.4)
Krzywą o skończonej długości, której pochodna się nie zeruje, można sparametryzo-

wać w taki sposób, żeby moduł pochodnej nowej parametryzacji był stały(6). W związku
z tym warunek (2.4) dla krzywej α jest równoważny warunkowi poniższemu:

α : [0, 1)→ D klasy C1, lim
t→1

α(t) = z0, ∃A > 0 : |α′(t)| = A, t ∈ [0, 1). (2.4’)

Dodajmy, że stała A powyżej jest równa długości krzywej α.

Jednym z dwóch głównych rezultatów, wiążących teorię potencjału z zupełnością w
sensie Bergmana, jest poniższe twierdzenie. Jest ono uogólnieniem wyniku z [Juc 2004]
i uzasadnia wprowadzenie funkcji γ̂D.

Twierdzenie 2.3. Niech D ⊂ C będzie obszarem ograniczonym oraz niech z0 ∈ ∂D.
Jeśli obszar D nie jest b–zupełny w punkcie z0, to istnieje krzywa α : [0, 1]→ D taka,
że krzywa α∣∣[0,1) spełnia warunek (2.4), oraz:

istnieje stała M > 0 taka, że γ̂D(α(t)) ⩽M dla każdego t ∈ [0, 1]. (2.5)

Główną rolę w dowodzie powyższego twierdzenia odgrywają Twierdzenie 2.4 i tech-
niczny Lemat 2.5. Twierdzenie 2.4, które wykorzystamy wielokrotnie w innych częściach
tego rozdziału, zasługuje na wyróżnienie jako odrębny wynik.

Twierdzenie 2.4. Niech D ⊂ C będzie obszarem ograniczonym takim, że z0 ∈ ∂D.
Jeżeli D nie jest b–zupełny w z0, to istnieje krzywa α, spełniająca warunek (2.4), o skoń-
czonej długości względem metryki Bergmana i taka, że jądro Bergmana jest ograniczone
na α([0, 1)).

(6)Jeżeli moduł pochodnej parametryzacji jest stale równy 1, to jest to tzw. parametryzacja normalna.
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Lemat 2.5. Niech D ⊂ C będzie obszarem takim, że ∆(0, 12 ) \ ∆(0, 129 ) ⊂ D ⊂
∆(0, 1), 0 ∈ D oraz krzywa α : [0, 1) → D spełnia warunek (2.4’) dla punktu 0.
Załóżmy, że istnieje stała T > 0 taka, że

sup
k⩾1

22k

− log cap (Ak(0) \D)
⩽ T. (2.6)

Wtedy ∫ 1
0
MD
(
α(t);α′(t)

)
dt ⩾ T̃ γ̂D(0), (2.7)

gdzie stała T̃ > 0 zależy jedynie od T oraz od średnicy obszaru D.

Bezpośrednio z Twierdzenia 2.3 możemy wyciągnąć wniosek, z którego będziemy
korzystać w następnym rozdziale.

Wniosek 2.6. Jeśli D ⊂ C jest obszarem ograniczonym takim, że γ̂D(z0) = +∞
dla punktu z0 ∈ ∂D, to D jest b–zupełny w punkcie z0.
W szczególności, jeśli γ̂D(z) = +∞ dla wszystkich z ∈ ∂D, to obszar D jest b–zupeł-

ny.

Warunek γ̂D(z0) = +∞ nie jest warunkiem koniecznym dla b–zupełności obszaruD w
punkcie z0 ∈ ∂D. W Przykładzie 2.7 konstruujemy obszar zupełny w sensie Bergmana,
dla którego ten warunek nie zachodzi w pewnym punkcie brzegowym.

Przez analogię do Twierdzenia 1.30, można wysunąć przypuszczenie, że b–zupełność
w punkcie z0 jest równoważna temu, że limD∋z→z0 γ̂D(z) = +∞. Jednakże obszar z
poniższego przykładu wyklucza również taką możliwość.

Przykład 2.7. Niech D będzie obszarem określonym w następujący sposób:

D := ∆(0, 1) \
( ∞∪
j=2

2j−1∪
k=0

∆(xj,k, rj) ∪ {0}
)
,

gdzie xj,k := 1
2j e
i 2πk
2j , dla k = 0, . . . , 2j − 1, oraz rj > 0 są takie, że − log rj = 23jj4.

Tak zdefiniowany obszar D jest b–zupełny, jednakże zachodzi γ̂D(0) < +∞ oraz
lim infD∋z→0 γ̂D(z) < +∞.
W szczególności, D nie jest wyczerpywalny (w zerze).

Nie wiadomo, czy twierdzenie odwrotne do Twierdzenia 2.3 jest prawdziwe. Jed-
nakże, przy dodatkowym założeniu dla obszaru D i punktu z0, można udowodnić jego
słabszą wersję.

Twierdzenie 2.8. Niech D ⊂ C będzie obszarem ograniczonym oraz z0 ∈ ∂D.
Załóżmy, że istnieje krzywa α, która spełnia warunek (2.4) oraz dwa poniższe:

istnieje stała θ ∈ (0, 1] taka, że dist (α(t), ∂D) ⩾ θ|α(t)− z0|, t ∈ [0, 1), (2.8)

istnieje stała R > 0 taka, że
∫
α−1(Aj(z0))

|α′(t)| dt ⩽ R

2j
, j ⩾ 1. (2.9)
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Wtedy, jeśli γ̂D(z0) < +∞, to D nie jest b–zupełny w punkcie z0.

Zwróćmy uwagę, że założenia Twierdzenia 2.8 dotyczące krzywej α są spełnione dla
punktu z0 ∈ ∂D, jeśli można wpisać w obszar D pewien kąt o wierzchołku w z0. W
szczególności, zachodzi to np. dla obszarów typu Zalcmana (zob. Rozdział III).

Warunek (2.9) w założeniu twierdzenia jest, zdaniem autora, czysto techniczny.
Natomiast warunku (2.8) nie można zastąpić warunkiem słabszym dist (α(t), ∂D) ⩾
θ|α(t)− z0|a, gdzie a > 1 — pokazuje to Przykład 2.9.

Przykład 2.9. Niech a ∈ (1, 2) oraz R > 0 będą liczbami rzeczywistymi. Wybierzmy
p, q ∈ N takie, że 1 + p

q < a. Zdefiniujmy obszar D w następujący sposób:

D := D1 ∪DR,a,

gdzie
DR,a := {z ∈ ∆(0, 1) : Re z > 0, |Imz| < R(Re z)a}

oraz

D1 := ∆(0, 1) \
( ∞∪
j=2

2pj−1∪
k=0

∆(xj,k, rj) ∪ {0}
)
,

przy czym xj,k := 1
2qj e

i 2πk
2pj , dla k = 0, . . . , 2pj − 1, i rj > 0 są takie, że − log rj =

2(2q+p)jj4.
Wtedy:

– krzywa α(t) = 1
4 −

1
4 t, t ∈ [0, 1), spełnia warunki (2.4’) i (2.9) oraz istnieje

t0 ∈ (0, 1) takie, że

dist (α(t), ∂D) ⩾ R

2
|α(t)|a, dla t > t0;

– γ̂D(0) < +∞;
– D jest b–zupełny.

Powyższe wyniki skłaniają do wysunięcia pewnej hipotezy, która może charaktery-
zować b–zupełność.

Hipoteza 2.10. Niech D ⊂ C będzie obszarem ograniczonym oraz niech z0 ∈ ∂D.
Wtedy następujące warunki są równoważne:

(a) Obszar D nie jest b–zupełny w punkcie z0.
(b) Istnieje krzywa α : [0, 1)→ D spełniająca warunki (2.4) i (2.5).

2.1. Dowody twierdzeń

Dowód Obserwacji 2.2. Dowód nie odbiega zasadniczo w szczegółach od dowodu
Obserwacji 1.29 (por. [Zwo 2002], [Pfl–Zwo 2003]).

(a). Jeżeli z ∈ D, to ∆(z, ε) ⊂ D dla pewnego ε > 0. Wtedy − log cap
(
∆(z, δ)\D

)
=

+∞ dla 0 < δ < ε i γ̂D(z) =
∫ 1
4
ε

dδ

δ2
√
− log cap (∆(z,δ)\D)

< +∞.
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Jeżeli natomiast z ̸∈ D, to D ∩∆(z, ε) = ∅ dla dostatecznie małego ε > 0 i, dzięki
Twierdzeniu D.23(f), γ̂D(z) ⩾

∫ ε
0

dδ
δ2
√
− log δ = +∞.

(b). Ustalmy punkt w ∈ C oraz liczbę t > 0 taką, że γ̂D(w) > t. Istnieje δ0 > 0 takie,

że
∫ 1
4
δ0

dδ

δ2
√
− log cap (∆(w,δ)\D)

> t.

Dla punktu z ∈ C takiego, że 0 < |w − z| < δ < 1
4 zachodzi nierówność (dzięki

Twierdzeniu D.23(d))

1√
− log cap

(
∆(w, δ) \D

)
⩽ 1√
− log cap

(
∆(z, δ) \D

) +
1√

− log cap
(
∆(w, δ) \∆(z, δ)

) ,
a po scałkowaniu mamy

t < γ̂D(z) +
∫ 1
4

δ0

dδ

δ2
√
− log cap

(
∆(w, δ) \∆(z, δ)

) .
Z twierdzenia Lebesgue’a o przechodzeniu do granicy pod znakiem całki oraz z dowol-
ności t wynika, że lim infz→w γ̂D(z) ⩾ γ̂D(w).

Jeżeli z, w ∈ D, to w analogiczny sposób otrzymujemy oszacowanie

|γ̂D(w)− γ̂D(z)|

⩽
∫ 1
4

ε

dδ

δ2
√
− log cap

(
∆(w, δ) \∆(z, δ)

) +
∫ 1
4

ε

dδ

δ2
√
− log cap

(
∆(z, δ) \∆(w, δ)

) ,
gdzie ε > 0 jest taką liczbą, że ∆(z, ε) ∪∆(w, ε) ⊂ D. Stosując ponownie twierdzenie
Lebesgue’a dostajemy, że limz→w γ̂D(z) = γ̂D(w).

(c). Weźmy z ∈ D. Korzystając z Twierdzenia D.23(d) oraz z subaddytywności
funkcji x 7→

√
x, x ⩾ 0, dostajemy

γ̂D(z) =
∞∑
k=2

∫ 1
2k

1
2k+1

dδ

δ2
√
− log cap

(
∆(z, δ) \D

) ⩽ ∞∑
k=2

2k+1
1√

− log cap
(
∆(z, 12k ) \D

)
⩽
∞∑
k=2

2k+1
∞∑
j=k

1√
− log cap

(
Aj(z) \D

) =
∞∑
j=2

j∑
k=2

2k+1
1√

− log cap
(
Aj(z) \D

)
⩽ 4

∞∑
j=2

2j√
− log cap

(
Aj(z) \D

) .
Z drugiej strony, mamy

γ̂D(z) =
∞∑
j=2

∫ 1
2j

1
2j+1

dδ

δ2
√
− log cap

(
∆(z, δ) \D

) ⩾ ∞∑
j=2

2j−1
1√

− log cap
(
Aj+1(z) \D

)
=

1
4

∞∑
j=3

2j√
− log cap

(
Aj(z) \D

) .
25



(d). Własność ta wynika z nierówności w punkcie (c), Obserwacji 1.29(b) oraz wła-
sności szeregów.

(e). Ustalmy r > 1 oraz z ∈ C. Dokonamy zmiany zmiennych (δ ⇝ rδ) w całce
poniżej:

γ̂rD(rz) =
∫ 1
4

0

dδ

δ2
√
− log cap

(
∆(rz, δ) \ rD

)
=

1
r

∫ 1
4r

0

dδ

δ2
√
− log r − log cap

(
∆(z, δ) \D

) .
Wynika stąd lewa nierówność we wzorze (2.3). Funkcję f definiujemy w następujący
sposób

f(z) :=
1
r

∫ 1
4

1
4r

dδ

δ2
√
− log cap

(
∆(z, δ) \D

) ,
a jej ciągłości dowodzimy postępując podobnie jak w punkcie (b).

Aby udowodnić prawą nierówność, wystarczy zauważyć, że dla δ ∈ (0, 14r )

− log cap
(
∆(z, δ) \D

)
− log r − log cap

(
∆(z, δ) \D

) ⩽ log 4r
log 4

.

Rzeczywiście, mamy − log cap
(
∆(z, δ)\D

)
⩾ log 4r, a funkcja x 7→ x

− log r+x , x ⩾ log 4r,
jest malejąca.

(f). Własność ta wynika z monotoniczności pojemności logarytmicznej (Twierdze-
nie D.23(a)) oraz z monotoniczności funkcji x 7→ 1

− log x , x ⩾ 0. □

Dowód Twierdzenia 2.3. Bez straty ogólności możemy założyć, że z0 = 0 oraz
∆(0, 34 ) \ ∆(0, 1210 ) ⊂ D ⊂ ∆(0, 34 ). Z wyjściowym zbiorem D postępujemy kolejno
w następujący sposób: przesuwamy o wektor −z0; jeżeli dD := supz∈D |z| < 1

210 , to
przekształcamy go przez homotetię z 7→ rz, gdzie r > 1

dD210
> 1; bierzemy sumę z

∆(0, 34 ) \ ∆(0, 1210 ) i część wspólną z ∆(0, 34 ). Powyższe przekształcenia nie wpływają
na zupełność obszaru D (Obserwacja 1.2(f) i Twierdzenie 1.27) oraz zachowują ograni-
czoność funkcji γ̂D (Obserwacja 2.2(e)).

Z Twierdzenia 2.4 wynika istnienie krzywej α o skończonej długości względem me-
tryki Bergmana, spełniającej warunek (2.4’) (równoważny warunkowi (2.4)), wzdłuż
której jądro Bergmana kD jest ograniczone od góry przez pewną uniwersalną stałą.
Twierdzenie 1.31(a) i Obserwacja 1.29(a),(b) implikują istnienie stałej T > 0 takiej, że

∞∑
j=1

22j

− log cap
(
Aj(α(t)) \D

) ⩽ T, t ∈ [0, 1]. (2.10)

Przypuśćmy, że funkcja γ̂D nie jest ograniczona na obrazie krzywej α. Wtedy ist-
nieje rosnący ciąg punktów (tk)∞k=10 ⊂ [0, 1] taki, że α(tk) ∈ ∆(0, 12k ) i γ̂D(α(tk)) >
k. Dla każdego punktu α(tk) spełnione są założenia Lematu 2.5 z krzywą α̃(s) :=
α(stk), s ∈ [0, 1). Rzeczywiście, po przesunięciu obszaru D o wektor −α(tk) mamy
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∆(0, 12 ) \∆(0, 129 ) ⊂ D ⊂ ∆(0, 1), a warunek (2.10) gwarantuje, że zachodzi nierówność
(2.6) z tą samą stałą T .

Z tezy Lematu 2.5 wynika, że∫ tk
0

MD
(
α(t);α′(t)

)
dt =
∫ 1
0
MD
(
α̃(s); α̃′(s)

)
ds ⩾ T̃ γ̂D(α(tk)), k ⩾ 10,

gdzie stała T̃ > 0 nie zależy od k. Mamy zatem∫ 1
0
MD
(
α(t);α′(t)

)
dt ⩾ lim

k→∞
T̃ k = +∞,

co wobec Obserwacji 1.2(e) oznacza, że

LβD (α) =
∫ 1
0
βD
(
α(t);α′(t)

)
dt = +∞.

Jest to sprzeczne z założeniem o α, więc γ̂D musi być ograniczona od góry na α([0, 1))
przez pewną stałą M > 0. Z półciągłości funkcji γ̂D (Obserwacja 2.1(b)) wynika, że
również γ̂D(0) ⩽M . □

Dowód Twierdzenia 2.4.
Krok 1. Istnieje krzywa α : [0, 1) → D klasy C1 spełniająca warunek (2.4) oraz

taka, że LβD (α) < +∞.
Z założenia twierdzenia wynika, że istnieje bD–ciąg Cauchy’ego (zk)∞k=1 ⊂ D zbieżny

do punktu z0. Z tego ciągu wybieramy podciąg (będziemy numerować go tymi sa-
mymi indeksami) taki, że bD(zk, zk+1) < 1

2k+1 . Następnie każdą parę punktów zk, zk+1
łączymy krzywą o długości względem metryki Bergmana nieprzekraczającej 1

2k . Po
„sklejeniu” wszystkich kawałków dostajemy krzywą (oznaczmy ją α : [0, 1) → D) o
skończonej długości w sensie Bergmana, która nie jest klasy C1 co najwyżej w punktach
α−1(zk). Możemy jednak ją wygładzić, zachowując skończoność jej długości, ponieważ
metryka i odległość Bergmana są ciągłe (Obserwacja 1.2(c),(d)).

Ze względu na fakt, że dla obszarów ograniczonych odległość euklidesowa jest ogra-
niczona od góry przez odległość Bergmana pomnożoną przez pewną stałą (zob. Obser-
wacja 1.2(j)), krzywa α ma skończoną długość (w zwykłym sensie).
Krok 2. Jądro Bergmana kD jest ograniczone na α([0, 1)).
Przypuśćmy, że jądro Bergmana kD nie jest ograniczone na tej krzywej. Wtedy ist-

nieje ciąg (wk)∞k=1 ⊂ α([0, 1)) taki, że limk→∞ wk = z0 oraz limk→+∞ kD(wk) = +∞.
Ciąg (wk)k=1 jest również bD–ciągiem Cauchy’ego, ponieważ krzywa α ma skończoną
długość względem βD. Dzięki Twierdzeniu 1.11 (por. [Pfl 1982], [Chen 1999]) istnieje
podciąg (wkj )

∞
j=1 oraz funkcja f ∈ L2h(D) takie, że

|f(wkj )|√
kD(wkj )

→ 1, j →∞.

Przestrzeń funkcji z L2h(D) ograniczonych w otoczeniu z0 jest gęsta w L2h(D) (Twierdze-
nie 1.17). Dlatego istnieje funkcja g ∈ L2h(D) taka, że lim supD∋z→z0 |g(z)| < ∞ oraz
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∥g − f∥D ⩽ 1
2 . Korzystając z ogólnych własności jądra Bergmana (Obserwacja 1.1),

dostajemy
|g(wkj )|√
kD(wkj )

⩾
|f(wkj )|√
kD(wkj )

− ∥f − g∥D ⩾
|f(wkj )|√
kD(wkj )

− 1
2
.

Po przejściu z j do nieskończoności otrzymujemy żądaną sprzeczność, co kończy dowód.
□

Dowód Lematu 2.5. Bez straty ogólności możemy założyć, że |α(0)| < 1
2 . Zdefi-

niujmy następujące zbiory:

Bm :=
{
z ∈ C : arg z ∈

[
2π
16

(m− 1),
2π
16
m

]}
, dla m = 1 . . . , 16.

Następnie, dla każdego j ⩾ 1, oznaczmy przez Kj jeden spośród zbiorów Aj(0)∩Bm\D,
m = 1, . . . , 16, spełniający warunek

1
− log cap (Aj(0) \D)

⩾ 1
− log cap (Kj)

⩾ 1
−16 log cap (Aj(0) \D)

. (2.11)

Taki zbiór istnieje, dzięki Twierdzeniu D.23(d).
Przypomnijmy definicję funkcji fK , dla zbioru zwartego K ⊂ C:

fK(ζ) :=


∫
K

dµK(λ)
ζ − λ

, jeśli capK > 0

0, jeśli capK = 0
, ζ ∈ C \K,

gdzie µK jest miarą równowagi zbioru K (zob. Dodatek).
Korzystając z powyższej definicji dla funkcji fKj i dzięki temu, że każdy ze zbiorów

Kj zawiera się w pewnym kącie Bm możemy, przeprowadzając elementarne rachunki,
otrzymać następujące oszacowania (o ile tylko zbiór Kj nie jest polarny):

2j−1 cos
π

4
< |fKj (w)| < 2j+2,

22j−2 cos
π

4
< |f ′Kj (w)| < 22j+4,

(2.12)

dla dowolnych j ⩾ 1 i w ∈ Al(0) ∩D, gdzie l ⩾ j + 4. Niech ponadto

f0(z) :=
1

2− z
, z ∈ D.

Łatwo sprawdzić, że ∥f0∥D ⩽ 1 oraz supD |f0| ⩽ 1.
Oszacujemy funkcję MD(·; 1) na zbiorach D∩AN (0). Ustalmy dowolne N ⩾ 9 takie,

że KN nie jest polarny oraz punkt w ∈ AN+4(0) ∩D. Połóżmy

f := f0(w)fKN − fKN (w)f0.
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Zachodzi f ∈ L2h(D) oraz f(w) = 0. Korzystając z nierówności (2.12), oszacujmy od
dołu pochodną f w punkcie w:

|f ′(w)| ⩾ 1
|2− w|

|f ′KN (w)| − |fKN (w)| 1
|2− w|2

⩾ 1
3

22N−2
√

2
2
− 2N+2 > 22N−6.

Poniżej, szacując normę w przestrzeni L2h(D), korzystamy kolejno z nierówności (2.12)
i Lematu 1.35 (zob. Uwaga 1.36), warunku (2.11) oraz założenia (2.6):

∥f∥D ⩽ 2N+2 + ∥fKN ∥D ⩽ 2N+2 +
√
−C log capKN

⩽ 2N+2 +
√
−16C log cap (AN (0) \D) ⩽ T1

√
− log cap (AN (0) \D).

Stała T1 > 0 zależy jedynie od stałej C z Lematu 1.35 (a więc od średnicy zbioru D)
oraz od T z warunku (2.6).

Mamy zatem dla N ⩾ 9 oraz w ∈ AN+4(0) ∩D:

MD(w; 1) ⩾ |f
′(w)|
∥f∥D

⩾ 1
T126

22N√
− log cap (AN (0) \D)

. (2.13)

Zwróćmy uwagę, że powyższa nierówność (pomijając środkową część, w której występuje
funkcja f) jest prawdziwa dla wszystkich N ⩾ 9, a nie tylko dla tych, dla których zbiór
KN jest niepolarny.

Długość odcinka krzywej α zawartego w pierścieniu AN (0) można oszacować od dołu
(dzięki warunkowi (2.4’)). Niech tN , tN+1 ∈ [0, 1] będą takimi punktami, że tN < tN+1,
|α(tN )| = 1

2N , |α(tN+1)| = 1
2N+1 oraz α([tN , tN+1]) ⊂ AN (0). Wtedy∫

α−1(AN (0))
|α′(t)| dt ⩾ A|tN − tN+1| ⩾ |α(tN )− α(tN+1)| ⩾

1
2N+1

,

gdzie stała A ≡ |α′(t)|, t ∈ (0, 1), pochodzi z warunku (2.4’).
Ostatecznie, stosując powyższe oszacowania oraz Obserwację 2.2(c) (pamiętajmy, że

∆(0, 12 ) \∆(0, 129 ) ⊂ D), dostajemy:∫ 1
0
MD
(
α(t);α′(t)

)
dt ⩾

∞∑
N=9

inf
w∈AN+4(0)∩D

MD(w; 1)
1

2N+5

⩾ 1
211T1

∞∑
N=9

2N√
− log cap (AN (0) \D)

⩾ T̃ γ̂D(0).

Stała T̃ > 0 zależy tylko od T1, czyli od średnicy D i stałej T z warunku (2.6). □

Dowód Przykładu 2.7. Pokażemy najpierw, że γ̂D(0) < +∞. Zauważmy, że dla
dowolnego j ⩾ 2

Aj(0) \D ⊂
2j−1∪
k=0

∆(xj,k, rj) ∪
2j+1−1∪
k=0

∆(xj+1,k, rj+1).
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Zatem, dzięki własnościom pojemności (Twierdzenie D.23(d)), mamy

1
− log cap

(
Aj(0) \D

) ⩽ 2j
1

− log rj
+ 2j+1

1
− log rj+1

⩽ 2
22jj4

(2.14)

i w konsekwencji

∞∑
j=1

2j√
− log cap

(
Aj(0) \D

) ⩽ √2
∞∑
j=1

2j

2jj2
< +∞.

Wobec Obserwacji 2.2(c), oznacza to, że γ̂D(0) < +∞.
Udowodnimy, że dolna granica γ̂D(z), gdy z → 0, jest skończona. Połóżmy:

yj :=
1
2j+1 + 1

2j

2
=

3
2j+2

, j ⩾ 3.

Wystarczy pokazać, że istnieje stała dodatnia C taka, że

γ̂D(yj) ⩽ C, j ⩾ 3. (2.15)

Z Obserwacji 2.2(d) i Twierdzenia 1.31(b) dostaniemy wtedy również, że funkcja γD
oraz jądro Bergmana nie dążą do nieskończoności, gdy argumenty zmierzają do zera.

Skorzystamy z Obserwacji 2.2(c), aby pokazać (2.15). W tym celu zauważmy, że dla
ustalonego j ⩾ 3 zachodzą inkluzje:

Al(yj) \D = ∅, gdy l ⩾ j + 3,

Aj+2(yj) \D ⊂ Aj(0) \D,
Aj+1(yj) \D ⊂

(
Aj+1(0) ∪Aj(0) ∪Aj−1(0)

)
\D,

Aj(yj) \D ⊂
∞∪

m=j−1
Am(0) \D,

Al(yj) \D ⊂
l+3∪
m=l−2

Am(0) \D, gdy l ⩽ j − 1.

Udowodnimy ostatnią z nich — pozostałe dowodzi się podobnie lub znacznie prościej.
Dla ustalonego j ⩾ 3 oraz l ∈ {2, . . . , j − 1} mamy Al(yj) ∩ Am(0) = ∅, jeśli zachodzi
jedna z nierówności

yj +
1
2l
<

1
2m+1

lub
1

2m
<

1
2l+1
− yj .

Pierwsza z nich zachodzi, gdy m < l − 2, a druga — gdy m > l + 3.
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Z powyższych inkluzji, dzięki Twierdzeniu D.23(d),(f) i nierówności (2.14), mamy
następującą serię szacowań:

1
− log cap

(
Al(yj) \D

) = 0, gdy l ⩾ j + 3,

1
− log cap

(
Aj+2(yj) \D

) ⩽ 2
22jj4

,

1
− log cap

(
Aj+1(yj) \D

) ⩽ 6
22(j−1)(j − 1)4

,

1
− log cap

(
Aj(yj) \D

) ⩽ ∞∑
m=j−1

2
22mm4

<
1

22(j−2)(j − 2)4
,

1
− log cap

(
Al(yj) \D

) ⩽ 12
22(l−2)(l − 2)4

, gdy 2 < l ⩽ j − 1,

1
− log cap

(
A2(yj) \D

) < 3.

Ostatecznie, korzystając z Obserwacji 2.2(c), dostajemy

γ̂D(yj) ⩽ 4
∞∑
l=2

2l√
− log cap

(
Al(yj) \D

) < 4
(

3 + 4
∞∑
l=3

2l

2l−2(l − 2)2

)
< +∞.

Pozostaje nam wykazać zupełność obszaru D. Dowiedziemy, że dla dowolnego punktu
z ∈ D takiego, że |z| = 1

2j (j ⩾ 5) zachodzi:

kD(z) ⩾ C̃ 2j

j4
, (2.16)

gdzie stała C̃ > 0 nie zależy od j.
Ustalmy j ⩾ 5 oraz z ∈ D o module równym 1

2j . Punkt z leży na łuku między
pewnymi punktami postaci xj,k i xj,k+1. Można zauważyć, że

|xj,k − xj,k+1| ⩽
2π
22j
⩽ 8

22j
,

dla wszystkich „sąsiednich” punktów xj,k, xj,k+1. Zatem, zbiór A2j−5(z) \ D musi za-
wierać co najmniej jedno koło ∆(xj,k, rj). Wykorzystamy teraz Twierdzenie 1.31(a),
Obserwację 1.29(b) oraz fakt, że A2j−5(z) \D ⊃ ∆(xj,k, rj) dla pewnego k:

kD(z) ⩾ CγD(z) ⩾ C

8

∞∑
l=5

22l

− log cap
(
Al(z) \D

)
⩾ C

8
· 24j−10

− log cap
(
A2j−5(z) \D

) ⩾ C

8
· 24j−10

− log rj
=

C

213
· 2
j

j4
.

Stała dodatnia C powyżej zależy jedynie od średnicy D.
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Nierówność (2.16) wyklucza istnienie krzywej α ∈ C1([0, 1), D), limt→1 α(t) = 0
takiej, że jądro Bergmana kD jest ograniczone na α([0, 1)), ponieważ obraz krzywej α
musi przecinać nieskończenie wiele okręgów o środku w 0 i promieniach równych 1

2j .
Na podstawie Twierdzenia 2.4, można wyciągnąć wniosek, że D jest b–zupełny w

punkcie 0. Pozostałe punkty brzegowe są regularne (Twierdzenie D.25), a zatem D jest
wyczerpywalny (Twierdzenie 1.16) oraz b–zupełny (Twierdzenie 1.21) w tych punktach.
□

Dowód Twierdzenia 2.8. Pokażemy, że długość krzywej α względem metryki
Bergmana βD jest skończona. W obszarach ograniczonych wartości jądra Bergmana
są oddzielone od zera (wynika to z Obserwacji 1.1(e),(j)). Ze względu na ten fakt oraz
na Obserwację 1.2(e), wystarczy zatem udowodnić, że∫ 1

0
MD
(
α(t);α′(t)

)
dt <∞. (2.17)

Dzięki własności lokalizacji (Twierdzenie 1.27 i Obserwacja 1.2(f)), możemy założyć
bez straty ogólności (podobnie jak to uzasadnialiśmy w dowodzie Twierdzenia 2.3), że
z0 = 0 oraz

∆(0, 1) \∆
(

0,
1
9

)
⊂ D ⊂ ∆(0, 1). (2.18)

Wprowadźmy następujące oznaczenia

K0 := ∆(0, 1) \∆(0, 1− ε0),
Kj := Aj(0) \D, j ⩾ 1,

Lj :=
∞∪

k=j+1

Kk ∪∆(0, εj), j ⩾ 1,

gdzie ε0 < 1
4 jest pewną ustaloną liczbą dodatnią. Stałe εj ∈

(
0, θ
2j+1
)

wybieramy tak
małe, aby

1
− log capLj

< 2
∞∑

k=j+1

1
− log capKk

(2.19)

(możemy tak uczynić ze względu na Twierdzenie D.23(d),(f)).
Zauważmy, że z założenia γ̂D(0) < +∞ i Obserwacji 2.2(c) wynika, że

∞∑
k=1

2k√
− log capKk

< +∞. (2.20)

Zdefiniujmy pomocnicze obszary

Dj :=
(
D ∪∆(0, εj)

)
∩∆(0, 1− ε0). j ⩾ 1

Powiększając odpowiednio zbioryKj , j ⩾ 1, możemy założyć bez straty ogólności, dzięki
własnościom pojemności logarytmicznej (Twierdzenie D.23(c)), że obszary C\Kj , j ⩾ 1
są regularne, a brzeg każdego ze zbiorów Dj jest sumą skończonej liczby łuków Jordana.
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Niech B ⊂ C będzie dowolnym zbiorem zwartym takim, że C\B jest obszarem regu-
larnym oraz 0 < capB < 1. Oznaczmy przez pB := pµB jego potencjał logarytmiczny
(zob. Dodatek). Wybierzmy funkcje χB ∈ C∞(R, [0, 1]) takie, że

χB(t) =


1, gdy t ⩽ log capB

0, gdy t ⩾ 1
2

log capB
(2.21)

oraz

|χ′B(t)| ⩽ 4
− log capB

, t ∈ R. (2.22)

Niech φB := χB ◦pB . Jeżeli B jest polarny lub pusty, to przyjmijmy umowę φB ≡ 0.
Dzięki twierdzeniu Frostmana (Twierdzenie D.27) φB ≡ 1 na B (o ile B nie jest polarny
lub pusty). Ponadto,∣∣∣∣∂φB∂z (z)

∣∣∣∣ = ∣∣∣∣χ′B(pB(z))
∂pB(z)
∂z

∣∣∣∣ ⩽ 4|fB(z)|
− log capB

, z ∈ D. (2.23)

Ustalmy dodatkowo funkcję φ0 ∈ C∞(R, [0, 1]) taką, że φ0 ≡ 1 na zbiorze K0 oraz
suppφ0 ⊂ ∆(0, 1 + ε0) \∆(0, 1− 2ε0).

Połóżmy
ψj := max{φ0, φK1 , . . . , φKj , φLj}. (2.24)

Mamy ψj ≡ 1 na ∂Dj . Pewne dodatkowe własności, których użyjemy w dalszej części
dowodu, zostały zebrane w poniższym lemacie, który zostanie wykazany później.

Lemat 2.11. Niech D ⊂ C spełnia warunek (2.18) oraz niech α będzie krzywą speł-
niającą warunki (2.4) i (2.8) dla z0 = 0 ∈ ∂D.
Wtedy istnieje N0 ∈ N oraz stałe m,M > 0 takie, że dla dowolnych j > N0, N ∈ N

oraz x ∈ AN (0) ∩ α([0, 1]) zachodzi

(a) suppφKj ⊂ Aj−1(0) ∪Aj(0) ∪Aj+1(0), suppφLj ⊂
∪∞
s=j As(0);

(b) dist (x, suppφKj ∪ suppφLj ) ⩾ m
2N , gdy j > N

oraz dist (x, suppφKj ) ⩾ m2j , gdy j ⩽ N ;
(c)
∥∥∂φKj
∂z

∥∥
D
⩽ M√

− log capKj
,
∥∥∂φLj
∂z

∥∥
D
⩽
∑∞
s=j+1

M√
− log capKs

.

Oszacujemy funkcję MD(·; 1) wzdłuż krzywej α.
Ustalmy N > 2 oraz x ∈ AN−1(0) ∩ α([0, 1]). Weźmy dowolną funkcję f ∈ L2h(D),

f ̸≡ 0.
Ze wzoru całkowego Cauchy’ego oraz ze wzoru Greena dla funkcji lipschitzowskich

(Twierdzenie D.36) dostajemy, że:

|f ′(x)| = 1
2π

∣∣∣∣ ∫
∂DN

f(z) dz
(z − x)2

∣∣∣∣
=

1
2π

∣∣∣∣ ∫
∂DN

f(z)ψN (z) dz
(z − x)2

∣∣∣∣ = 1
π

∣∣∣∣ ∫
DN

f(z)
(z − x)2

∂ψN
∂z

(z) dL2(z)
∣∣∣∣.
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Następnie stosujemy nierówność Cauchy’ego–Schwarza oraz Lemat 2.7:

|f ′(x)|

⩽ 1
π

∫
suppφ0

|f(z)|
|z − x|2

∣∣∣∣∂φ0∂z (z)
∣∣∣∣+ 1

π

(N−1∑
j=2

∫
Aj(0)

+
∫
∞∪
s=N
Aj(0)

)
|f(z)|
|z − x|2

∣∣∣∣∂ψN∂z (z)
∣∣∣∣ dL2(z)

⩽ 1
π
∥f∥D

∥∥∥∥∂φ0∂z
∥∥∥∥
D

sup
z∈suppφ0

1
|z − x|2

+
1
π

N−1∑
j=2

∫
Aj(0)

|f(z)|
|z − x|2

(∣∣∣∣∂φKj−1∂z
(z)
∣∣∣∣+ ∣∣∣∣∂φKj∂z

(z)
∣∣∣∣+ ∣∣∣∣∂φKj+1∂z

(z)
∣∣∣∣) dL2(z)

+
1
π

∫
∞∪
s=N
Aj(0)

|f(z)|
|z − x|2

(∣∣∣∣∂φKN−1∂z
(z)
∣∣∣∣+ ∣∣∣∣∂φKN∂z

(z)
∣∣∣∣+ ∣∣∣∣∂φLN∂z

(z)
∣∣∣∣) dL2(z)

⩽ C1∥f∥D
(

1 +
N∑
j=1

sup
z∈suppφKj

1
|z − x|2

∥∥∥∥∂φKj∂z

∥∥∥∥
D

+ sup
z∈suppφLN

1
|z − x|2

∥∥∥∥∂φLN∂z

∥∥∥∥
D

)

⩽ C1∥f∥D
(

1 +
N∑
j=1

22j

m2
M√

− log capKj
+

∞∑
j=N+1

22N

m2
M√

− log capKj

)
.

Stałe m,M pochodzą z Lematu 2.11 i zależą od zbioru D, natomiast stała C1 > 0
jedynie od wyboru funkcji φ0.

Mamy więc następującą nierówność dla x ∈ AN−1(0) ∩ α([0, 1]):

MD(x; 1) ⩽ C2
(

1 +
N∑
j=1

22j√
− log capKj

+ 22N
∞∑

j=N+1

1√
− log capKj

)
, (2.25)

gdzie C2 > 0 jest pewną uniwersalną stałą zależną tylko od obszaru D.
Szacując poniższą całkę, wykorzystujemy warunek (2.9):∫ 1
0
MD
(
α(t);α′(t)

)
dt

⩽
∞∑
N=1

(
sup

x∈AN (0)∩α([0,1])
MD(x; 1)

∫
α−1(AN (0))

|α′(t)| dt
)

⩽ C2R
∞∑
N=1

(
1

2N
+

1
2N

N∑
j=1

22j√
− log capKj

+ 2N
∞∑

j=N+1

1√
− log capKj

)

⩽ C2R+
∞∑
j=1

( ∞∑
N=j

1
2N

)
22j√

− log capKj
+
∞∑
j=2

( j−1∑
N=1

2N
)

1√
− log capKj

⩽ C2R+
1
2

∞∑
j=1

2j√
− log capKj

+ 2
∞∑
j=2

2j√
− log capKj

.

Warunek (2.20) kończy dowód. □
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Dowód Przykładu 2.9. Sprawdźmy, że krzywa α spełnia żądane własności. Wa-
runki (2.4’) i (2.9) zachodzą w oczywisty sposób. Weźmy zatem dowolny punkt x0 ∈(
0, 14
)

i niech x1 będzie punktem z przedziału (0, x0) takim, że

dist (x0, ∂D) = |x0 − (x1 + iRxa1)| > Rxa1 .

Wystarczy teraz pokazać, że Rxa1 >
R
2 x
a
0 dla x0 dostatecznie bliskich 0. Zwróćmy uwagę,

że z elementarnych własności wykresu funkcji różniczkowalnej, mamy

x0 − x1
Rxa1

= Raxa−11 .

Stąd wynika, że iloraz x0x1 dąży do 1, gdy x0 → 0, a to gwarantuje już potrzebną
nierówność.

Pokażemy teraz, że γ̂D(0) < +∞. Zauważmy, że dla j ⩾ 2

Aqj−1(0) ∪Aqj(0) \D ⊂
2pj−1∪
k=0

∆(xj,k, rj),

a dla pozostałych l ⩾ 2 różnych od qj i qj − 1

Al(0) \D = ∅.

Podobnie jak w Przykładzie 2.7, dzięki Obserwacji 2.2(c) oraz Twierdzeniu D.23(d)
mamy

γ̂D(0) ⩽ 4
∞∑
l=2

2l√
− log cap

(
Al(0) \D

) ⩽ 8
∞∑
j=2

2qj√
− log cap

(∪2pj−1
k=0 ∆(xj,k, rj)

)
⩽ 8

∞∑
j=2

2qj
√

2pj

2(2q+p)jj4
= 8

∞∑
j=2

1
j2

< +∞.

Udowodnijmy w końcu zupełność obszaru D. Analogicznie jak w Przykładzie 2.7,
pokażemy, że dla dowolnego punktu z o module równym 1

2qj (dla dostatecznie dużych
j) zachodzi

kD(z) ⩾ C̃ 2pj

j4
. (2.26)

Gwarantuje to, że nie istnieje krzywa spełniająca warunek (2.4) dla punktu 0, wzdłuż
której jądro Bergmana byłoby ograniczone. Na podstawie Twierdzenia 2.4 dostajemy
b–zupełność D w punkcie 0. Zupełność w pozostałych punktach gwarantuje Twierdze-
nie 1.21 (poprzez Twierdzenie D.25).

Ustalmy j ⩾ 2 i weźmy punkt z o module równym 1
2qj . Dla „sąsiednich” punktów

xj,k, xj,k+1 mamy:

|xj,k − xj,k+1| ⩽
2π
2qj
· 1

2pj
=

2π
2(p+q)j

.
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Z geometrii zbioru D wynika więc, że

dist (z, ∂D) ⩽ R

2qja
+

2π
2(p+q)j

<
8

2(p+q)j
,

dla j > j0. Takie j0 ∈ N istnieje, ponieważ qa > p+ q.
W konsekwencji, dla odpowiednio dużego j (można założyć, że dla j > j0) i dowol-

nego z ∈ D o module równym 1
2qj zbiór A(p+q)j−5(z) \ D zawiera co najmniej jedno

koło ∆(xj,k, rj) dla pewnego k ∈ {0, . . . , 2pj − 1}. Zatem z Twierdzenia 1.31(a) oraz
Obserwacji 1.29(b) mamy

kD(z) ⩾ CγD(z) ⩾ C

8

∞∑
l=j0

22l

− log cap
(
Al(z) \D

)
⩾ C

8
· 22(p+q)j−10

− log cap
(
A(p+q)j−5(z) \D

) ⩾ C

8
· 2
2(p+q)j−10

− log rj
=

C

213
· 2
pj

j4
,

dla punktów z ∈ D o module równym 1
2qj (j > j0). □

Dowód Lematu 2.11. Z definicji funkcji χB oraz z definicji potencjału (zob. Defi-
nicja D.21) wynika, że dla zbioru B takiego, że 0 < capB < 1, zachodzi

suppφB ⊂ {z ∈ C : pB(z) ⩽ 1
2

log capB} ⊂ {z ∈ C : dist (z,B) ⩽
√

capB}. (2.27)

Zatem, aby inkluzje w punkcie (a) zachodziły, wystarczy pokazać, że
√

capKj < 1
2j+2

oraz
√

capLj < 1
2j+1 dla dostatecznie dużych j. Istotnie, z warunków (2.20) oraz (2.19)

wynika, że dla dowolnego δ > 0 istnieje N0 takie, że dla j > N0 zachodzi

capKj ⩽
−1

log capKj
<

δ2

22j+4
,

capLj ⩽
−1

log capLj
< 2

∞∑
k=j+1

−1
log capKk

< 2
∞∑

k=j+1

δ2

22k+4
<

δ2

22j+4
.

Ustalmy N ∈ N oraz punkt x ∈ AN (0)∩α([0, 1)). Weźmy dowolne j > max{N,N0}.
Wtedy, korzystając z udowodnionych wyżej oszacowań, dostajemy

dist (x, suppφKj ∪ suppφLj) > dist (x, ∂D ∪∆(0, εj))−
√

capKj −
√

capLj

>
θ

2N+1
− εj −

2δ
2j+2

>
θ

2N+1
− θ

2N+2
− 2δ

2N+3
.

Przypomnijmy, że w definicji zbioru Lj wybieraliśmy εj <
θ
2j+1 . Teraz biorąc δ < θ

2 ,
dostaniemy nierówność

dist (x, suppφKj ∪ suppφLj ) >
θ

2N+3
.
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Podobnie dla j = N − 2, N − 1, N (pamiętajmy, że j > N0):

dist (x, suppφKj ) > dist (x, ∂D)−
√

capKj >
θ

2N+1
− δ

2j+2

i kładąc δ < θ
4 otrzymujemy:

dist (x, suppφKj ) >
θ

2j+4
.

Dla j ⩽ N − 3 mamy, dzięki udowodnionemu już punktowi (a),

dist (x, suppφKj ) > dist (x,Aj+1(0)) >
1

2j+2
− 1

2N
⩾ 1

2j+2
− 1

2j+3
=

1
2j+3

⩾ θ

2j+3
.

Wystarczy przyjąć m := θ
24 .

Z warunku (2.23) wynika, że∥∥∥∥∂φB∂z
∥∥∥∥
D

⩽ 4∥fB∥D
− log capB

,

gdzie B = Kj lub B = Lj , j ⩾ 1. Wystarczy teraz zastosować Lemat 1.35 (zob.
Uwaga 1.36). □
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ROZDZIAŁ III

OBSZARY TYPU ZALCMANA

W pracy [Zal 1969] został wprowadzony specjalny typ obszarów na płaszczyźnie
zespolonej (obszary typu (L)), których brzeg ma nieskończenie wiele składowych spój-
nych.

Definicja 3.1. Obszarami typu (L) w sensie Zalcmana lub, krócej, obszarami typu
Zalcmana albo obszarami typu (L) będziemy nazywać obszary postaci:

D := ∆(0, 1) \
( ∞∪
k=1

∆(xk, rk) ∪ {0}
)
, (3.1)

gdzie xk > xk+1 > 0, limk→+∞ xk = 0, ∆(xk, rk) ⊂ ∆(0, 1) oraz ∆(xk, rk)∩∆(xl, rl) =
∅, dla k, l ⩾ 1, k ̸= l.

Obszary te były również badane w kontekście zupełności w sensie Bergmana (zob.
[Ohs 1993], [Chen 1999], [Chen 2001]). Ohsawa ([Ohs 1993]) scharakteryzował hiper-
wypukłe obszary typu (L), które spełniają warunek (3.2), i podał przykład niehiper-
wypukłego i wyczerpywalnego obszaru tego typu. Chen wskazał przykład obszaru typu
(L), który jest b–zupełny, ale nie hiperwypukły ([Chen 1999]). Zwonek ([Zwo 2001],
zob. Twierdzenie 1.12) skonstruował inny przykład obszaru z brzegiem nieskończenie
spójnym(7), który jest b–zupełny, ale nie wyczerpywalny — był to jednocześnie kontr-
przykład do hipotezy Kobayashiego o twierdzeniu odwrotnym do 1.9.

Główną motywacją do badania tych obszarów było dla nas następujące pytanie
Pfluga ([Pfl 2000]):

Które obszary typu (L), spełniające warunek

xk =
1
2k
, (3.2)

są b–zupełne?
Przedstawimy pełną charakteryzację wyczerpywalności oraz b–zupełności (Twierdze-

nie 3.7) dla obszarów typu (L) w sensie Zalcmana, które spełniają warunek

istnieje liczba Θ ∈ (0, 1) taka, że
xk+1
xk
⩽ Θ dla każdego k ⩾ 1. (3.3)

Będą to wnioski z rezultatów z poprzedniego rozdziału lub ze znanych wcześniej wyni-
ków (por. [Juc 2004]). W szczególności, rozwiążemy problem postawiony przez Pfluga.

Zauważmy, że w przypadku obszarów typu (L) istotne będzie dla nas zachowanie się
funkcji Bergmana jedynie w otoczeniu punktu 0.

(7)Nie jest to obszar typu (L) w rozumieniu Definicji 3.1
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Obserwacja 3.2. Niech D będzie obszarem typu (L) oraz niech z0 ∈ ∂D, z0 ̸= 0.
Wtedy D jest wyczerpywalny i b–zupełny w punkcie z0.

Dowód. Punkt z0 ∈ ∂D \ {0} leży na pewnym okręgu, który jest składową spójną
∂D, więc z Twierdzenia D.25 wynika, że jest punktem regularnym. Z Twierdzenia 1.16
mamy zatem, że

lim
D∋z→z0

kD(z) = +∞,

a Twierdzenie 1.21 daje nam b–zupełność obszaru D w z0. □

Wniosek 3.3. Niech D będzie obszarem typu (L). Wtedy:

(a) D jest wyczerpywalny wtedy i tylko wtedy, gdy

γD(0) = +∞. (3.4)

(b) D jest b–zupełny wtedy i tylko wtedy, gdy

γ̂D(0) = +∞. (3.5)

Dowód.
(a). Bezpośrednio z definicji funkcji γD (1.11) wynika, że γD jest rosnąca na odcinku

[−14 , 0]. Z tego oraz z półciągłości z dołu (Obserwacja 1.29(a)) można wywnioskować,
że warunek (3.4) jest równoważny warunkowi

lim
D∋z→0

γD(z) = +∞.

Twierdzenie 1.30 kończy dowód.
(b). Widać, że obszar D spełnia założenia (2.8) i (2.9) w Twierdzeniu 2.8. Fakt, że

D jest b–zupełny w 0, oznacza tym samym, że zachodzi warunek (3.5).
Implikacja odwrotna wynika bezpośrednio z Wniosku 2.6. □

Dla obszarów typu (L) w sensie Zalcmana (zdefiniowanych wzorem (3.1)) rozważmy
następujące warunki:

∞∑
k=1

1
−x2k log rk

= +∞, (3.6)

∞∑
k=1

1
xk
√
− log rk

= +∞. (3.7)

Lemat 3.4. Niech D ⊂ C będzie obszarem typu (L). Wtedy zachodzą następujące
implikacje:

(3.4) =⇒ (3.6), (3.5) =⇒ (3.7).

Ponadto, jeśli zachodzi warunek (3.3), to również

(3.6) =⇒ (3.4) oraz (3.7) =⇒ (3.5).
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Dowód. Przeprowadzimy dowód jednocześnie dla implikacji (3.4) =⇒ (3.6) oraz
(3.5) =⇒ (3.7). Połóżmy

A :=
∫ 1
4

0

dδ

δa+1
(
− log cap

(
∆(0, δ) \D

))b , (3.8)

gdzie a = 1 i b = 1
2 (wtedy A = γ̂D(0)) albo a = 2 i b = 1 (wtedy A = γD(0)).(8)

Załóżmy, że szereg
∞∑
k=1

1
xak(− log rk)b

(3.9)

jest zbieżny. Dla dostatecznie dużych k mamy wtedy

rk ⩽
1
4
xk.

Ponieważ nie wpłynie to na zbieżność szeregu, możemy założyć, że nierówność ta za-
chodzi dla wszystkich k ⩾ 1.

Z geometrii zbioru D i z powyższej nierówności wynika, że dowolne koło ∆(xk, rk),
k ⩾ 1 przecina jednocześnie co najwyżej dwa zbiory Aj(0) i Aj+1(0) dla pewnego j ⩾ 0.
Ponadto, zachodzi wtedy

xk ⩽
1
2j

oraz, dzięki Twierdzeniu D.23(d),

1
− log cap

(
Aj(z) \D

) ⩽ ∑
k∈N:

∆(xk,rk)∩Aj(0) ̸=∅

1
− log rk

.

Korzystając z tego, co zauważyliśmy powyżej, z subaddytywności funkcji R+ ∋ x 7→√
x (w przypadku, gdy b = 1

2 ) oraz z Obserwacji 2.2(c) i 1.29(b), dostajemy

A ⩽ 8
∞∑
j=2

2aj(
− log cap

(
Aj(z) \D

))b ⩽ 8
∞∑
j=2

2aj
∑
k∈N:

∆(xk,rk)∩Aj(0) ̸=∅

1
(− log rk)b

⩽ 8 ·
∞∑
j=2

∑
k∈N:

∆(xk,rk)∩Aj(0) ̸=∅

1
xak(− log rk)b

⩽ 16 ·
∞∑
k=1

1
xak(− log rk)b

,

(3.10)

czyli A < +∞. Pierwsza część lematu została zatem udowodniona.

(8)Oczywiście, dowód jest prawdziwy dla każdego a > 0. Nie potrzebujemy go jednak tutaj w pełnej
ogólności. W dalszej części rozdziału wykorzystamy jeszcze jedynie fragment poniższego rozumowania
dla a = 2 i b = 1

2 .
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Oszacujemy teraz całkę (3.8) od dołu, aby pokazać implikacje odwrotne. Załóżmy,
bez utraty ogólności, że x1 ⩽ 14 i zauważmy, że ∆(0, δ)\D ⊃ ∆(xk+1− 12rk+1,

1
2rk+1) dla

δ ∈ [ 12k+1 ,
1
2k ]. Stosując Twierdzenie D.23(a),(f), a następnie warunek (3.3), dostajemy

A ⩾
∞∑
k=1

∫ xk
xk+1

dδ

δa+1
(
− log cap

(
∆(0, δ) \D

))b
⩾ 1
a

∞∑
k=1

(
1

xak+1
− 1
xak

)
1

(− log 12rk+1)
b
⩾ 1−Θa

2ba

∞∑
k=2

1
xak(− log rk)b

.

Pojawienie się stałej 12b w ostatnim wyrażeniu wynika z nierówności 12rk ⩾ r2k dla k ⩾ 1
(mamy rk ⩽ x1 ⩽ 14 , k ⩾ 1). Lemat został więc udowodniony. □

W powyższym lemacie warunek (3.3) jest konieczny. Pokazują to poniższe przykłady.

Przykład 3.5. Niech

D := ∆(0, 1) \
( ∞∪
k=2

∆
(1
k
, rk

)
∪ {0}

)
,

gdzie rk > 0 są takie, że − log rk = k4. Wtedy D spełnia warunek (3.7), ale nie spełnia
(3.5).

Dowód. Łatwo widać, że

∞∑
k=2

1
xk
√
− log rk

=
∞∑
k=2

k

k2
= +∞.

Dla dowolnego j ⩾ 1 zachodzi

Aj(0) \D ⊂
2j+1∪
k=2j

∆(
1
k
, rk).

Gdy zastosujemy Twierdzenie D.33(d), dostaniemy

1
− log cap

(
Aj(0) \D

) ⩽ 2j+1∑
k=2j

1
− log rk

⩽ (2j + 1)
1

24j
<

2
23j

, j ⩾ 1.

Ostatecznie, z Obserwacji 2.2(c) mamy

γ̂D(0) ⩽ 4
∞∑
j=2

2j√
− log cap

(
Aj(0) \D

) ⩽ 4
√

2
∞∑
j=2

1√
2j

< +∞.

□

Aby skonstruować kontrprzykład do implikacji (3.6) =⇒ (3.4), potrzebne jest nieco
subtelniejsze rozumowanie.
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Przykład 3.6. Niech

D := ∆(0, 1) \
( ∞∪
j=2

j∪
k=1

∆(xj,k, rj) ∪ {0}
)
,

gdzie 1
2j+1 < xj,k <

1
2j , rj > 0, (j ⩾ 2, k = 1, . . . , j) są takie, że

− log rj = 22jj2,
j∪
k=1

∆(xj,k, rj) ⊂ Aj(0),

diam
( j∪
k=1

∆(xj,k, rj)
)
⩽ (3j − 1)rj .

Wtedy D spełnia warunek (3.6), ale nie spełnia (3.4).

Dowód. Zauważmy, że taki zbiór da się skonstruować zgodnie z warunkami (3.1).
Trzeba wziąć xj,k ∈

(
1
2j+1 ,

1
2j
)

(j ⩾ 2, k = 1, . . . , j) takie, że

xj,1 :=
1

2j+1
+

3
2
rj ,

xj,k − xj,k−1 = 3rj , k = 2, . . . , j.

Można to zrobić, ponieważ

3jrj = 3je−2
2jj2 <

1
2j+1

, j ⩾ 2.

Sprawdźmy, że zachodzi warunek (3.6):
∞∑
j=2

j∑
k=1

1
−x2j,k log rj

⩾
∞∑
j=2

j
22j

22jj2
= +∞.

Średnica zbioru Aj(0) \ D (j ⩾ 2) jest mniejsza niż 3jrj . Dlatego, stosując Twier-
dzenie D.23(d), dostajemy następującą nierówność

1

log 3jrj

cap
(
Aj(0)\D

) ⩽ j

log 3jrjrj
, j ⩾ 2,

która prowadzi do oszacowania:
1

− log cap
(
Aj(0) \D

) ⩽ 1
( 1j − 1) log 3j − log rj

⩽ 2
22jj2

, j ⩾ 2.

W konsekwencji, dzięki Obserwacji 1.29(b),

γD(0) ⩽ 8
∞∑
j=2

22j

− log cap
(
Aj(0) \D

) ⩽ 8
∞∑
j=2

2
j2

< +∞,

czyli warunek (3.4) nie jest spełniony. □
Poniższe twierdzenie jest wnioskiem z wyników z poprzedniego rozdziału, z Twier-

dzenia 1.30 (zob. również [Zwo 2001], [Juc 2004]) oraz z Kryterium Wienera (Twier-
dzenie D.26).

Charakteryzuje ono obszary typu (L) w sensie Zalcmana ze względu na własności
hiperwypukłości (por. [Ohs 1993]), wyczerpywalności oraz b–zupełności.
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Twierdzenie 3.7 (por. [Juc 2004]). Niech D ⊂ C będzie obszarem typu (L) speł-
niającym warunek (3.3). Wtedy:

(a) D jest wyczerpywalny wtedy i tylko wtedy, gdy

∞∑
k=1

−1
x2k log rk

= +∞.

(b) D jest b–zupełny wtedy i tylko wtedy, gdy

∞∑
k=1

1
xk
√
− log rk

= +∞.

(c) Jeśli ponadto istnieje Θ′ > 0 takie, że

Θ′ ⩽ xk+1
xk

, k ⩾ 1, (3.11)

to D jest hiperwypukły wtedy i tylko wtedy, gdy

∞∑
k=1

log xk
log rk

= +∞.

Dowód. Punkty (a) i (b) wynikają bezpośrednio z Wniosku 3.3 i Lematu 3.4. Po-
zostaje udowodnić punkt (c) (por. [Ohs 1993]).

Z własności zespolonej i klasycznej funkcji Greena wynika, że hiperwypukłość jest
równoważna regularności obszaru D (zob. Twierdzenie D.29 i Twierdzenie D.31). Po-
nieważ wiemy, że wszystkie punkty brzegowe zbioru D oprócz co najwyżej punktu 0 są
regularne (Twierdzenie D.25), wystarczy więc zastosować kryterium Wienera (Twier-
dzenie D.26) do 0. Połóżmy ρk := xk. Dzięki warunkom (3.3) i (3.11) mamy

0 < Θ′ ⩽ ρk+1
ρk
⩽ Θ < 1, k ⩾ 1,

zatem założenia kryterium Wienera, dotyczące liczb ρk, są spełnione. Zauważmy, że dla
zbioru

Fk = {z ∈ C : ρk+1 ⩽ |z| ⩽ ρk} \D, k ⩾ 1,

zachodzą inkluzje

∆
(
xk −

1
2
rk,

1
2
rk

)
⊂ Fk ⊂ ∆(xk+1, rk+1) ∪∆(xk, rk), k ⩾ 1.

Dzięki własnościom pojemności (Twierdzenie D.23(a),(d),(f)) prowadzą one do nastę-
pujących nierówności:

1
− log 12rk

⩽ 1
− log capFk

⩽ 1
− log rk+1

+
1

− log rk
, k ⩾ 1.
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Mnożąc wszystkie wyrazy powyżej przez − log xk i sumując po k, wnioskujemy (stosując
ponownie warunek (3.11)), że szeregi

∑∞
k=1

log ρk
log capFn

oraz
∑∞
k=1

log xk
log rk

są jednocześnie
zbieżne albo jednocześnie rozbieżne. Kryterium Wienera kończy dowód. □

Twierdzenie 3.7 daje odpowiedź na problem postawiony przez Pfluga [Pfl 2000],
który cytowaliśmy na początku rozdziału. Daje on również możliwość wyboru stosun-
kowo łatwych przykładów obszarów wyczerpywalnych niehiperwypukłych i zupełnych
niewyczerpywalnych (łatwiejszych niż w [Zwo 2001], por. przypis do Twierdzenia 1.12).

Jedynie dla porządku przedstawimy wniosek z tego twierdzenia, dotyczący obszarów
spełniających warunek

xk =
1
2k
, k ⩾ 1. (3.2)

Wniosek 3.8. Niech D ⊂ C będzie obszarem typu (L) spełniającym warunek (3.2).
Wtedy:

(a) D jest hiperwypukły wtedy i tylko wtedy, gdy

∞∑
k=1

k

− log rk
= +∞.

(b) D jest wyczerpywalny wtedy i tylko wtedy, gdy

∞∑
k=1

22k

− log rk
= +∞.

(c) D jest b–zupełny wtedy i tylko wtedy, gdy

∞∑
k=1

2k√
− log rk

= +∞.

Wnioskiem z rozważań z poprzedniego rozdziału jest również poniższy lemat, doty-
czący zachowania się metryki Bergmana βD w obszarach typu (L) (por. Corollary 5 w
[Pfl–Zwo 2003]). Wiąże się to z dyskusją na temat, kiedy

lim
D∋z→∂D

βD(z) = +∞.

Problem ten nie jest dotychczas rozwiązany, nawet dla obszarów typu (L) w sensie
Zalcmana spełniających warunek (3.2) (zob. [Jar–Pfl 2004], Open problems).

Lemat 3.9. Niech D ⊂ C będzie obszarem typu (L). Wtedy:
(a)

∞∑
k=1

1
x2k
√
− log rk

< +∞ =⇒ lim sup
0>x→0

βD(x) < +∞.

(b) Jeśli dodatkowo D spełnia warunek (3.3), to

lim sup
0>x→0

βD(x) < +∞ =⇒ lim sup
k→∞

1
x2k
√
− log rk

< +∞.
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Dowód. (a). Jądro Bergmana kD jest oddzielone od zera na zbiorze D (wynika to
z Obserwacji 1.1(e),(j)), więc wystarczy pokazać (dzięki Obserwacji 1.2(e)), że

lim sup
0>x→0

MD(x; 1) < +∞.

Z oszacowania (2.25) w dowodzie Twierdzenia 2.8 (zbiór D spełnia założenia tego twier-
dzenia) wynika, że

MD(x; 1) ⩽ C
(

1 +
∞∑
j=1

22j√
− log cap

(
Aj(0) \D

)), x ∈ (−1
4
, 0),

gdzie C > 0 jest pewną stałą zależną jedynie od zbioru D.
Wystarczy zatem pokazać, że zbieżność szeregu

∞∑
k=1

1
x2k
√
− log rk

implikuje zbieżność szeregu

∞∑
k=1

22j√
− log cap

(
Aj(0) \D

) .
Wynika to bezpośrednio z ciągu nierówności (3.10) w dowodzie Lematu 3.4. Zauważmy,
że pierwsza część dowodu Lematu 3.4 pozostaje prawdziwa również dla a = 2 i b = 1

2 .
Ponadto, nie musimy odwoływać się do Obserwacji 2.2, ponieważ nie korzystamy nigdzie
z nierówności, w którą byłaby uwikłana całka (3.8).

(b). Z założenia oraz z ciągłości metryki Bergmana βD wynika, że jest ona ogra-
niczona na odcinku (− 14 , 0). Oznacza to, że długość tego odcinka względem metryki
Bergmana jest skończona. Stąd mamy, że D nie jest b–zupełny w punkcie 0 i w rezulta-
cie γ̂D(0) < +∞ (Wniosek 3.3). Tym samym, założenia Lematu 2.5 są spełnione: jako
krzywą α przyjmujemy parametryzację odcinka (−14 , 0) o stałej pochodnej; warunek
(2.6) wynika z faktu, że γ̂D(0) < +∞; założenie ∆(0, 12 ) \∆(0, 129 ) ⊂ D nie wpływa na
zachowanie się metryki βD w otoczeniu 0 (Twierdzenie 1.5).

Możemy zatem wykorzystać oszacowanie (2.13):

MD(x; 1) ⩾ C 22j√
− log cap (Aj(0) \D)

, x ∈
[
− 1

2j+5
,− 1

2j+4

]
, j ⩾ 9, (3.12)

gdzie stała C > 0 zależy tylko od zbioru D.
Dodatkowo, jądro Bergmana kD jest ograniczone na odcinku

(
− 14 , 0

)
— aby to

pokazać, wystarczy np. powtórzyć Krok 2 z dowodu Twierdzenia 2.4.
Łącząc powyższe dwa fakty i Obserwację 1.2(e), dostajemy, że

lim sup
j→∞

22j√
− log cap (Aj(0) \D)

< +∞.
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Pokazaliśmy wyżej, że γ̂D(0) < +∞, co oznacza, że szereg w warunku (3.7) jest
zbieżny (Lemat 3.4). W takim razie, dla dostatecznie dużych liczb naturalnych k, mamy
rk ⩽ 14xk i inkluzję

∆(xk, rk) ⊂ Aj(0) ∪Aj+1(0) \D,

dla pewnego j = j(k) ⩾ 1. Wynika stąd (i z Twierdzenia D.23(d)), że

lim sup
k→∞

1
x2k
√
− log rk

⩽ lim sup
k→∞

(
22j(k)+2√

− log cap (Aj(k)(0) \D)
+

22j(k)+4√
− log cap (Aj(k)+1(0) \D)

)
⩽ 2 lim sup

j→∞

22j+2√
− log cap (Aj(0) \D)

< +∞,

co kończy dowód. □

Postępując analogicznie jak w dowodzie Lematu 3.9(b) można udowodnić nawet wię-
cej, dzięki nierówności (3.12) (dla punktów x niekoniecznie rzeczywistych):

Obserwacja 3.10. Niech D ⊂ C będzie obszarem typu (L), spełniającym warunek
(3.3). Jeśli

lim
j→∞

22j√
− log cap (Aj(0) \D)

= +∞,

to
lim
D∋z→0

MD(z, 1) = +∞ oraz lim
0>x→0

βD(x) = +∞.

Zbieżność szeregu w Lemacie 3.9(a) implikuje fakt, że obszar D nie jest b–zupełny
w 0. Można w takim razie postawić pytanie, czy stąd, że

lim
0>x→0

βD(x) = +∞

wynika już zupełność obszaru D w sensie Bergmana. Poniższy przykład pokazuje, że
nie musi tak być.

Przykład 3.11. Niech

D := ∆(0, 1) \
( ∞∪
k=1

∆
( 1

2k
, rk

)
∪ {0}

)
,

gdzie rk > 0 są takie, że − log rk = k422k.
Wtedy

lim
0>x→0

βD(x) = +∞,

ale D nie jest b–zupełny w punkcie 0.

Dowód. Obszar D jest zupełny w sensie Bergmana, ponieważ (Wniosek 3.8(c))

∞∑
k=1

2k√
− log rk

=
∞∑
k=1

1
k2

< +∞.
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Z drugiej strony,

22j√
− log cap (Aj(0) \D)

⩾ 22j√
− log 12rj

⩾ 22j+1

j22j
, j ⩾ 1,

bo ∆
(
1
2j −

1
2rj ,

1
2rj
)
⊂ Aj(0) \D. Z Obserwacji 3.10 dostajemy, że

lim
0>x→0

βD(x) = +∞.

□
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ROZDZIAŁ IV

ZUPEŁNOŚĆ OBSZARÓW REINHARDTA

Jednym ze zbiorów podawanych jako przykład pseudowypukłego ograniczonego ob-
szaru niehiperwypukłego, ale b–zupełnego jest poniższy obszar Reinhardta, skonstru-
owany przez Herborta ([Her 1999]):

D :=
{

(z, w) ∈ C2 : |w|2 < e
− 1
|z|2 , |z| < 1

}
.

Problem, które pseudowypukłe ograniczone obszary Reinhardta w Cn są b–zupełne
został całkowicie rozwiązany przez Zwonka ([Zwo 1999a]). Wynik ten (geometryczną
charakteryzację tych obszarów) przytoczyliśmy w Rozdziale I (Twierdzenie 1.43). Wia-
domo również, które obszary Reinhardta są hiperwypukłe ([Zwo 2000b], [Zwo 2000a],
zob. Twierdzenie 1.42).

Kolejnym, pojawiającym się w naturalny sposób, jest problem postawiony przez
Jarnickiego i Pfluga ([Jar–Pfl 2004]):

Podać charakteryzację wszystkich nieograniczonych pseudowypukłych ob-
szarów Reinhardta, które są b–zupełne.

Przedstawimy jego częściowe rozwiązanie — analogon Twierdzenia 1.43 dla nieogra-
niczonych pseudowypukłych obszarów Reinhardta w C2 (Twierdzenie 4.1) oraz dla pseu-
dowypukłych c–hiperbolicznych obszarów Reinhardta (Twierdzenie 4.2).

Przypomnijmy najpierw definicje stożków maksymalnych, które podaliśmy w Roz-
dziale I:

C(D) := {v ∈ Rn : a+ R+v ⊂ logD},

C̃(D) := {v ∈ Rn : istnieje lim
t→+∞

exp(a+ tv) ∈ D},

C′(D) := C(D) \ C̃(D).

Definicje nie zależą od punktu a ∈ logD, ponieważ, zgodnie z Twierdzeniem 1.41, logD
jest wypukły.

Twierdzenie 4.1. Niech D ⊂ C2 będzie pseudowypukłym obszarem Reinhardta
(niekoniecznie ograniczonym) takim, że logD nie zawiera linii prostych. Wtedy na-
stępujące warunki są równoważne:

(a) D jest b–zupełny.
(b) C′(D) ∩Q2 = ∅.

Wnioskiem z już znanych twierdzeń jest następujący rezultat dotyczący c–hiperbo-
licznych obszarów Reinhardta.
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Twierdzenie 4.2. Niech D ⊂ Cn będzie pseudowypukłym c–hiperbolicznym obsza-
rem Reinhardta. Wtedy następujące warunki są równoważne:

(a) D jest b–zupełny.
(b) C′(D) ∩Qn = ∅.

W obszarach nieograniczonych pojawia się problem istnienia metryki Bergmana, a
nawet dodatniości jądra Bergmana. Pokażemy w Lemacie 4.8, że warunek (b) z Twier-
dzenia 4.1 implikuje β–hiperboliczność obszaru D (tzn. jądro Bergmana kD jest do-
datnie i βD jest metryką). W przypadku Twierdzenia 4.2 wynika to z dowodu (zob.
niżej).

Można zadać sobie pytanie, czy da sie w tym przypadku wykorzystać zacytowane
przez nas w Rozdziale I, Twierdzenie 1.24 ([Chen–Zhang 2002]) dotyczące zupełności
obszarów nieograniczonych.

Okazuje się, ze nie można go zastosować do nieograniczonych obszarów Reinhardta.
Pokazuje to poniższy przykład.

Przykład 4.3. Niech

D :=
{

(z1, z2) ∈ C2 : |z2| < min{1, exp(−|z1|+ 1)}
}
.

Wtedy D jest b–zupełny, ale nie są spełnione założenia Twierdzenia 1.24.

Dowód. Łatwo zauważyć, że logD =
{

(x1, x2) ∈ R2 : x2 < min{0,− expx1 + 1}
}

.
Zatem C(D) = C̃(D) = R2− oraz C′(D) = ∅. Z Twierdzenia 4.1 wynika, że D jest
b–zupełny.

Niech gD(w, ·) będzie funkcją Greena obszaru D z biegunem w punkcie w ∈ D (zob.
Dodatek). Wtedy funkcja z 7→ gD(w, (z, 0)) jest ograniczona od góry i subharmoniczna
na C (Twierdzenie D.31(a)), a zatem musi być stała (Twierdzenie D.17(c)). Oznacza
to, że warunek (1.9) z założenia Twierdzenia 1.24 nie jest spełniony.(9) □

Zanim przystąpimy do dowodów, przypomnijmy kilka definicji i spostrzeżeń z Roz-
działu 1.3.

Dla obszaru Reinhardta D ⊂ Cn zdefiniujmy:

E = E(D) := {zα ∈ L2h(D) : α ∈ Zn},
A = A(D) := {α ∈ Zn : zα ∈ L2h(D)},

J(D) := {j ∈ {1, . . . , n} : Vj ∩D ̸= ∅}.

Będziemy wykorzystywać dwie poniższe obserwacje (Lemat 1.46 i Obserwacja 1.48):

Lemat 4.4 ([Zwo 1999a], [Zwo 2000a]). Niech D ⊂ Cn będzie pseudowypukłym ob-
szarem Reinhardta oraz niech α ∈ Zn. Wtedy

zα ∈ L2h(D) ⇐⇒ ∀ v ∈ C(D) \ {0} : ⟨α+ 1, v⟩ < 0.

(9)Można pokazać nawet więcej dla obszaru D — w klasie pseudowypukłych obszarów Reinhardta
obszary hiperwypukłe muszą koniecznie być ograniczone ([Zwo 2000b], [Zwo 2000a], zob. Twierdze-
nie 1.42), a więc D z Przykładu 4.3 nie jest hiperwypukły.
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Obserwacja 4.5 (zob. Obserwacja 1.48). Niech D ⊂ Cn będzie pseudowypukłym
obszarem Reinhardta. Zbiór logD zawiera linię prostą wtedy i tylko wtedy, gdy L2h(D) =
{0}.
W szczególności, jeśli logD nie zawiera żadnej linii prostej, to zbiory E(D) i A(D)

są niepuste.

W związku z powyższą obserwacją, założenie, że logD nie zawiera linii prostych,
pojawiające się w Twierdzeniu 4.1 oraz w następnych wynikach nie jest istotnym ogra-
niczeniem.

Dla A = [Ajk]j,k=1,...,n ∈ Zn×n, zdefiniujmy odwzorowanie:

ΦA(z) := (zA
1
, . . . , zA

n

),

dla takich z ∈ Cn, że zk ̸= 0, gdy Ajk < 0 dla pewnego j = 1, . . . , n. (Oznaczamy

zA
j

:= (zA
j
1
1 , . . . , z

Ajn
n ), Aj jest j–tym wierszem macierzy A).

Będą nas interesować tylko takie odwzorowania ΦA, które są biholomorfizmami na
Cn∗ , tzn. spełniające warunek | detA| = 1 (lub, równoważnie A−1 ∈ Zn×n oraz detA ̸=
0) (zob. Obserwacja 1.49).

Dowód Twierdzenia 4.2. Z Twierdzenia 1.51 wynika, że istnieje odwzorowanie
algebraiczne

ΦA : D → Cn, gdzie A ∈ Zn×n, |detA| = 1, (4.1)

które przekształca biholomorficznie D na obszar ograniczony.
Obserwacja 1.1(h) i Obserwacja 1.2(f) gwarantują, że D, jako obszar biholomor-

ficzny z ograniczonym, jest β–hiperboliczny. Dzięki Twierdzeniu 1.43, wystarczy tylko
sprawdzić, że warunek (b) jest niezmiennikiem dla biholomorfizmów algebraicznych.
Dla odwzorowania ΦA takiego, jak w warunku (4.1), mamy

C(ΦA(D)) = AC(D)

oraz C̃(ΦA(D)) = AC̃(D).

Druga równość zachodzi dzięki tożsamości ΦA(ea+tv) = eA(a+tv), dla a ∈ logD, v ∈
Rn, t ∈ R. A zatem jest także C′(ΦA(D)) = AC′(D).

Z drugiej strony AQn = Qn, jeśli A jest macierzą o wyrazach całkowitych.
Warunek (b) jest zatem równoważny warunkowi C′(ΦA(D)) ∩Qn = ∅. □

Podamy teraz pewne charakteryzacje dodatniości jądra Bergmana i istnienia metryki
Bergmana.

Lemat 4.6. Niech D ⊂ Cn będzie pseudowypukłym obszarem Reinhardta takim, że
logD nie zawiera linii prostych. Wtedy następujące dwa warunki są równoważne:

(a) Jądro Bergmana kD jest ściśle dodatnie na D.
(b) Istnieje α ∈ A(D) takie, że αj = 0 dla każdego j ∈ J(D).(10)

(10)W przypadku, gdy J(D) = ∅, warunek ten można rozumieć w dwojaki sposób: albo jako
warunek pusto spełniony albo jako ”Istnieje α ∈ A(D)”. Obydwie możliwości są równoważne, ponieważ
A(D) ̸= ∅, gdy logD nie zawiera linii prostych (Obserwacja 4.5).
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Dowód. Dla dowodu lematu użyjemy Wniosku 1.4(a).
(b) =⇒ (a).
Zauważmy, że zbiór E(D) jest niepusty (Obserwacja 4.5). Stąd natychmiast wynika

warunek (1.2) i w konsekwencji dodatniość jądra Bergmana.
(a) =⇒ (b).
Zbiór E(D) jest bazą ortogonalną przestrzeni L2h(D), więc istnieją odpowiednie stałe

aα > 0 takie, że
kD(z) =

∑
α∈A(D)

aα|zα|2, z ∈ D.

Można założyć, że J(D) ̸= ∅. Dzięki własnościom pseudowypukłych obszarów Re-
inhardta (Twierdzenie 1.41) istnieje punkt w ∈ D taki, że wj = 0 dla wszystkich
j ∈ J(D). Mamy też αj ⩾ 0 dla j ∈ J(D), α ∈ A(D). Możemy zatem napisać

kD(w) =
∑

α∈A(D)
αj=0, jeżeli j∈J(D)

aα|wα|2 > 0,

z czego wnioskujemy istnienie żądanego α. □
Lemat 4.7. Niech D ⊂ C2 będzie pseudowypukłym obszarem Reinhardta takim, że

logD nie zawiera linii prostych. Wtedy następujące dwa warunki są równoważne:
(a) Metryka Bergmana βD jest dodatnio określona w każdym punkcie D.
(b) ∀ j ∈ J(D) ∃α, β ∈ A(D) : α ̸= β, αj = βj = 0.

Dowód. (a) =⇒ (b).
Można założyć, że J(D) ̸= ∅. Załóżmy, że 2 ∈ J(D), innymi słowy V2 ∩ D ̸= ∅.

(Przypadek, gdy 1 ∈ J(D) dowodzi się analogicznie).
Ustalmy punkt z0 ∈ D, z0 = (z01 , 0) ̸= (0, 0) i wektor X ∈ C2, X = (X1, 0) ̸= (0, 0).

Z Wniosku 1.4 oraz Lematu 4.6 wynika istnienie funkcji f ∈ L2h(D) takiej, że f(z0) = 0
i f ′(z0)X ̸= 0. Na podstawie Twierdzenia D.12 mamy następujące przedstawienie

f(z) =
∑
α∈A(D)

aαz
α.

Stąd
0 ̸= f ′(z0)X =

∑
α∈A(D):α2=0

α1aαz
α1−1
1 X1,

więc istnieje α ∈ A(D) takie, że α2 = 0. Co więcej, gdyby istniało tylko jedno takie α,
wtedy byłoby f(z0) ̸= 0.

(b) =⇒ (a).
Z założenia i Lematu 4.6 wynika, że warunek (1.2) zachodzi. Pozostaje pokazać

warunek (1.3), aby móc zastosować Wniosek 1.4.
Weźmy dowolny punkt z0 ∈ D i wektor X ∈ C2 \ {0}. Rozważymy trzy przypadki.
Przypadek 1: z0 = (0, 0).
Mamy wtedy J(D) = {1, 2}, co implikuje istnienie (α1, 0), (0, β2) ∈ A(D) takich, że

α1, β2 > 0. Zdefiniujmy

C := {a ∈ R2 : ⟨a, v⟩ < 0, dla każdego v ∈ C(D) \ {0}}. (4.2)
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Stożek C jest wypukły. Ponadto, z Lematu 4.4 wynika, że (α1 + 1, 1), (1, β2 + 1) ∈
C. Stąd możemy wyciągnąć wniosek, że również (1, 1), (2, 1), (1, 2) ∈ C, co oznacza
(0, 0), (1, 0), (0, 1) ∈ A(D).

Połóżmy
f(z) := z1 + cz2,

gdzie c jest stałą taką, że X1 + cX2 ̸= 0. Oczywiście f(0) = 0, f ∈ L2h(D) oraz

f ′(0)X := X1 + cX2 ̸= 0.

Przypadek 2: z0 = (z01 , 0), z01 ̸= 0.
Z założenia mamy istnienie (α1, 0) ̸= (β1, 0) ∈ A(D) a z Lematu 4.4, dodatkowo,

(2α1 + 1, 1) ∈ A(D).
Jeśli X2 ̸= 0, niech

f(z) := z2α1+11 z2.

Wtedy f ′(z01 , 0)X = (z01)
2α1+1X2 ̸= 0.

Jeśli X2 = 0, to
f(z) := zα11 − (z01)

α1−β1zβ11 .

W rezultacie, f ′(z01 , 0)X = (z01)
α1−1(α1 − β1)X1 ̸= 0.

W obydwu przypadkach mamy f ∈ L2h(D) i f(0) = 0.
Przypadek 3: z0 ∈ C2∗.
Niech w :=

(
X1
z01
, X2
z02

)
. Zbiór A(D) jest niepusty (Obserwacja 4.5). Możemy znaleźć

α, β ∈ A(D) takie, że
⟨α− β,w⟩ ̸= 0,

ponieważ stożek C zdefiniowany wzorem (4.2) jest otwarty. Połóżmy

f(z) := zα − (z0)α−βzβ .

Zachodzi f ∈ L2h(D), f(z0) = 0 oraz

f ′(z0)X = (z0)α
(

(α1 − β1)
X1
z01

+ (α2 − β2)
X2
z02

)
= (z0)α⟨α− β,w⟩ ̸= 0,

co kończy dowód. □

W Twierdzeniu 4.1 warunek (a) zawiera w sobie założenie o dodatniości jądra i
istnieniu metryki Bergmana. Pokażemy teraz, że warunek (b) również to implikuje.

Lemat 4.8. Niech D ⊂ C2 będzie pseudowypukłym obszarem Reinhardta takim, że
logD nie zawiera linii prostych.
Jeżeli C′(D)∩Q2 = ∅, to D jest β–hiperboliczny (tzn. kD > 0 oraz βD jest dodatnio

określona).

Dowód. Skorzystamy z dwóch poprzednich lematów oraz z faktu, że A(D) ̸= ∅
(Obserwacja 4.5). Przypadek, gdy J(D) = ∅ jest natychmiastowy. Jeżeli J(D) jest
niepusty, to zachodzi co najmniej jedna z inkluzji R−×{0} ⊂ C(D) lub {0}×R− ⊂ C(D).

Ponieważ stożek C(D) jest wypukły oraz C̃(D) ⊂ R2−, musi zachodzić również C(D) ⊂
R2−. Na podstawie Lematu 4.4 oznacza to, że Z2+ ⊂ A(D). Zastosowanie Lematów 4.6
i 4.7 kończy dowód. □

Podamy teraz pewną charakteryzację zbioru C(D) dla D ⊂ C2.
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Lemat 4.9. Niech D ⊂ C2 będzie pseudowypukłym obszarem Reinhardta takim, że
logD nie zawiera linii prostych. Jeżeli C′(D) ∩Q2 = ∅, to

C(D) = R2− ⇐⇒ D ∩ V1 ∩ V2 ̸= ∅,
C(D) = R− × {0} ⇐⇒ D ∩ V1 ̸= ∅, D ∩ V2 = ∅,
C(D) = {0} × R− ⇐⇒ D ∩ V1 = ∅, D ∩ V2 ̸= ∅,
C(D) = R+v dla pewnego v ∈ R2 : Rv ∩Q2 = {0} ⇐⇒ D ∩ (V1 ∪ V2) = ∅.

Dowód. Możemy założyć, że (1, 1) ∈ D.
Podobnie jak w dowodzie poprzedniego lematu można stwierdzić, że jeśli D∩V1 ̸= ∅,

to R− × {0} ⊂ C(D) oraz, analogicznie, {0} × R− ⊂ C(D), gdy D ∩ V2 ̸= ∅.
Zauważmy, że jeśli v ∈ C(D) ∩Q2, to

lim
t→∞

(
etv1 , etv2

)
=: w ∈ D,

ponieważ C(D) ∩Q2 ⊂ C̃(D) ⊂ R2−. Ponadto wj = 0, gdy vj < 0 i wj = 1, gdy vj = 0.
Powyższa obserwacja oraz wypukłość stożka C(D) dają nam tezę lematu. □

Dodajmy jeszcze, że w ostatnim przypadku C(D) = {0} wtedy i tylko wtedy, gdy D
jest ograniczony oraz D ∩ (V1 ∪ V2) = ∅.

Zanim przystąpimy do dowodu Twierdzenia 4.1, przedstawimy jeszcze kilka użytecz-
nych wyników.

Lemat 4.10. Niech D ⊂ Cn będzie pseudowypukłym obszarem Reinhardta takim, że
J(D) = {1, . . . , k} oraz niech Φ = ΦA : D → Cn będzie algebraicznym biholomorfizmem
na obraz.
Wtedy istnieje permutacja σ : {1, . . . , n} → {1, . . . , n} taka, że

σ ◦ Φ : Ck × Cn−k∗ → Ck × Cn−k∗

jest biholomorfizmem oraz σ ◦ Φ(Vj) = Vj dla j = 1, . . . , k.

Dowód. Dla macierzy A =
[
Alm
]
l,m=1,...,n ∈ Zn×n skojarzonej z biholomorfizmem

ΦA mamy | detA| = 1. Co więcej,

Alm ⩾ 0, dla l = 1, . . . , n, m = 1, . . . , k,

ponieważ D ∩ Vj ̸= ∅ dla j = 1, . . . , k.
Weźmy dowolny punkt z ∈ D ∩ Cn∗ . Wtedy

det Φ′(z) = det
[
∂Φl
∂zm

(z)
]
l,m=1...,n

= det
[
Alm

1
zm

zA
l

]
l,m=1...,n

=
n∏
l=1

zA
l 1
z1 . . . zn

det
[
Alm
]
l,m=1...,n = ±z

∑n
l=1 A

l
1−1

1 . . . z
∑n
l=1 A

l
n−1

n .
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Pierwsze i ostatnie wyrażenie w powyższym ciągu równości są funkcjami holomorficz-
nymi w D. Dlatego zachodzi również równość dla punktu z = (0, . . . , 0, zk+1, . . . , zn) ∈
D:

0 ̸= det Φ′(z) = ±z
∑n
l=1 A

l
1−1

1 . . . z
∑n
l=1 A

l
n−1

n .

Wykorzystując zerowanie się współrzędnych z1 = · · · = zk = 0, dostajemy stąd

n∑
l=1

Alj = 1 dla j = 1, . . . , k.

Ponieważ Alj ∈ Z+ dla j = 1, . . . , k, możemy założyć (permutując współrzędne w
razie potrzeby), że

Alj = δlj , gdy j = 1, . . . , k, l = 1, . . . , n,

gdzie δlj oznacza deltę Kroneckera.
W konsekwencji, otrzymujemy det Φ′(z) ̸= 0 dla z ∈ Ck×Cn−k∗ oraz Φ(Vj) ⊂ Vj , j =

1, . . . , k. To samo możemy udowodnić dla Φ−1 = ΦA−1 . □

Poniższe lematy pochodzą z pracy [Zwo 2000a] (zob. również [Zwo 1999a]). Podajemy
je bez dowodów.

Lemat 4.11 ([Zwo 1999a], [Zwo 2000a]). Niech β, v ∈ Rn, ∥v∥ = 1, {xν}∞ν=1 ⊂ Rn
będą takie, że ∥xν∥ → ∞, x

ν

∥xν∥ → v, gdy ν →∞, oraz ⟨β, v⟩ < 0. Wtedy

⟨β, xν⟩ → −∞, gdy ν → +∞.

Lemat 4.12 ([Zwo 1999a], [Zwo 2000a]). Niech C ⊂ Rn domkniętym i wypukłym
stożkiem niezawierającym linii prostych i takim, że C ∩Qn = {0}.
Wtedy dla dowolnego δ > 0, v ∈ C \ {0} istnieje β ∈ Zn takie, że

⟨β, v⟩ > 0,

⟨β,w⟩ < δ dla każdego w ∈ C, ∥w∥ = 1.

Lemat 4.13 ([Zwo 1999a], [Zwo 2000a]). Niech D ⊂ Cn będzie pseudowypukłym
ograniczonym obszarem Reinhardta. Ustalmy z0 ∈ ∂D spełniający następujący warunek:

dla dowolnego j ∈ {1, . . . , n}, jeśli z0j = 0, to D ∩ Vj ̸= ∅. (4.3)

Wtedy dla dowolnego ciągu (zk)∞k=1 ⊂ D zbieżnego do z0 oraz dla dowolnego f ∈
Span E(D)

lim
j→∞

|f(zk)|√
KD(zk)

= 0. (4.4)
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Uwaga 4.14. Podprzestrzeń Span E(D) jest gęsta w L2h(D), więc warunek (4.4) w
poprzednim lemacie zachodzi dla wszystkich f ∈ L2h(D).

Dowód Twierdzenia 4.1. (a) =⇒ (b)
Dowód tej implikacji nie różni się w istotnych szczegółach od dowodu Twierdze-

nia 1.43 (zob. [Zwo 1999a], [Zwo 2000a]) i jest prawdziwy nawet dla obszarów nieogra-
niczonych w Cn.

Przytoczymy go tutaj ze względu na kompletność.
Załóżmy, że (1, 1) ∈ D i weźmy v ∈ C′(D) ∩ Q2. Możemy założyć, że v ∈ Z2 oraz

v1, v2 są względnie pierwsze. Wystarczy pokazać, że krzywa (t−v1 , t−v2), 0 < t < 1, ma
skończoną długość względem metryki Bergmana.

Połóżmy
φ(λ) :=

(
λ−v1 , λ−v2

)
, λ ∈ ∆(0, 1) \ {0}.

Oczywiście φ ∈ O
(
∆(0, 1) \ {0}, D

)
. Niech u(λ) := kD(φ(λ)). Dzięki Lematowi 4.4

mamy

u(λ) =
∑

α∈Z2: ⟨α+1,v⟩

aα|λ|−2⟨α,v⟩ =
∞∑
j=j0

bj |λ|2j ,

gdzie bj0 ̸= 0. Następnie

β2D
(
φ(λ);φ′(λ)

)
=
∂2 log u(λ)

∂λ∂λ
=

∂2

∂λ∂λ

(
log

∞∑
j=j0

bj |λ|2j−2j0
)
.

Ponieważ ostatnie wyrażenie jest ograniczone dla 0 < |λ| < 1, więc również mamy∫ 1
0 βD
(
φ(t);φ′(t)

)
dt < +∞, co kończy dowód tej implikacji.

(b) =⇒ (a)
W dowodzie wykorzystamy kryterium Kobayashiego (Twierdzenie 1.9). Lemat 4.8

gwarantuje nam, że warunki (1.2) oraz (1.3) są spełnione. Wystarczy zweryfikować
warunek (1.5) dla funkcji z podprzestrzeni Span E(D), która jest gęsta w L2h(D). Prze-
strzeń Span E(D) składa się z kombinacji liniowych elementów z E(D), więc możemy
się w rzeczywistości ograniczyć w dowodzie jedynie do funkcji ze zbioru E(D).

Weźmy dowolny ciąg (zν)∞ν=1 ⊂ D, nieposiadający punktu skupienia w D oraz do-
wolną funkcję zα ∈ E(D). Bez straty ogólności możemy założyć, że (1, 1) ∈ D oraz
(zν)∞ν=1 ⊂ D ∩ C2∗ (dzięki ciągłości jądra Bergmana).

Rozważymy trzy przypadki:
I. Ciąg (zν)∞ν=1 nie ma punktu skupienia w C2.
II. Ciąg (zν)∞ν=1 posiada punkt skupienia z0 ∈ ∂D spełniający warunek (4.3).
III. Punkt (0, 0) ∈ ∂D jest punktem skupienia ciągu (zν)∞ν=1.
Zwróćmy uwagę, że gdyby istniał punkt z0 ̸= (0, 0) nie spełniający warunku (4.3),

dokładnie jedna z jego współrzędnych musiałaby być zerowa — dla ustalenia uwagi
niech z1 = 0, z2 ̸= 0. Wtedy D ∩ V1 ̸= ∅, czyli (−1, 0) ∈ C′(D), co przeczy założeniu.
Zatem powyższe trzy przypadki wyczerpują wszystkie możliwości zachowania się ciągu
(zν)∞ν=1.
Przypadek I: Ciąg (zν)∞ν=1 nie ma punktu skupienia w C2
Niech

xν := log |zν |, ν ⩾ 1.
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Mamy ∥xν∥ → ∞. Ponadto, biorąc w razie potrzeby stosowny podciąg, dostajemy

xν

∥xν∥
→ v ∈ C(D), ν →∞.

Rozważmy najpierw przypadek, gdy C(D) ⊂ R2−.
Wtedy musi być v = (−1, 0) lub v = (0,−1). Załóżmy, że v = (−1, 0). To oznacza, że

xν1 → −∞, czyli zν1 → 0 i |zν2 | → +∞. Co więcej, z Lematu 4.9 wynika, że D ∩ V1 ̸= ∅
oraz α1 ⩾ 0. Ponadto, inkluzja C(D) ⊂ R2− i Lemat 4.4 implikują, że funkcje stałe
należą do L2h(D).

Jeśli α1 > 0, to

|(zν)α|√
kD(zν)

⩽ ∥1∥De⟨x
ν ,α⟩ → 0, ν →∞,

dzięki Lematowi 4.11.
Jeśli α1 = 0, wtedy możemy wziąć β2 ∈ Z+ takie, że β2 > max{α2, 0}. Mamy

zβ22 ∈ L2h(D) oraz

|(zν)α|√
kD(zν)

=
|zν2 |α2√
kD(zν)

⩽ ∥zβ22 ∥D|zν2 |α2−β2 → 0, ν →∞,

ponieważ zν2 →∞, gdy ν →∞.
Jeżeli nie zachodzi C(D) ⊂ R2−, to musi być C(D) = R+v dla pewnego v ∈ R2\R ·Q2.

Możemy zatem skorzystać z Lematu 4.12 i wziąć β ∈ Z2 spełniające warunek 0 <
⟨β, v⟩ < −⟨α + 1, v⟩. Mamy wtedy zα+β ∈ L2h(D), bo ⟨α + β + 1, v⟩ < 0. Dzięki
Lematowi 4.11, dostajemy

|(zν)α|√
kD(zν)

⩽ ∥zα+β∥D
∣∣(zν)−β∣∣ = ∥zα+β∥De−⟨xν ,β⟩ → 0 ν →∞.

Przypadek II: Ciąg (zν)∞ν=1 posiada punkt skupienia z0 ∈ ∂D spełniający warunek
(4.3).

Zdefiniujmy obszar D̃ w następujący sposób

D̃ := D \ (V1 ∪ V2), jeżeli z0 ∈ C2∗,

D̃ := D \ V1, jeżeli z02 = 0

lub D̃ := D \ V2, jeżeli z01 = 0.

Zauważmy, że logD = log D̃, L2h(D) = L2h(D̃) oraz C(D) = C(D̃).
Ponadto, D̃∩Vj , j = 1, 2, może być albo pusty albo c–hiperboliczny (w tym wypadku

koło albo pierścień, niekoniecznie ograniczony). Twierdzenie 1.51 pozwala nam wziąć
biholomorfizm algebraiczny Φ = ΦA przekształcający D̃ na obszar ograniczony.

Z Lematu 4.10 wynika, że det Φ′(z0) ̸= 0, a punkt Φ(z0) ∈ ∂Φ(D̃) spełnia warunek
(4.3). Z faktu, że

f ◦ Φ−1 · det(Φ−1)′ ∈ L2h(Φ(D̃)) ⇐⇒ f ∈ L2h(D)
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oraz Lematu 4.13, mamy dla dowolnego f ∈ L2h(D) (a więc i dla f(z) = zα, które
zostało ustalone na początku dowodu):

|f(zν)|√
kD(zν)

=
|f(zν)|√
kD̃(zν)

=

∣∣f ◦ Φ−1
(
Φ(zν)

)∣∣√
kΦ(D̃)

(
Φ(zν)

)∣∣det Φ′(zν)
∣∣

=

∣∣(f ◦ Φ−1
)(

Φ(zν)
)

det(Φ−1)′
(
Φ(zν)

)∣∣√
kΦ(D̃)

(
Φ(zν)

) → 0 (ν →∞).

Przypadek III: Punkt (0, 0) ∈ ∂D jest punktem skupienia ciągu (zν)∞ν=1.
Podobnie, jak w dowodzie Przypadku I, zdefiniujmy

xν := log |zν |, ν ⩾ 1,

i załóżmy (wybierając ewentualnie odpowiedni podciąg i przenumerowując jego wy-
razy), że

xν

∥xν∥
→ v ∈ C(D), ν →∞.

Rozważmy najpierw przypadek, gdy D ∩ V1 ̸= ∅ i D ∩ V2 = ∅. (Przypadek, gdy
D ∩ V2 ̸= ∅ i D ∩ V1 = ∅ jest symetryczny). Mamy zatem α1 ⩾ 0 oraz, z Lematu 4.9,
C(D) = R− × {0}, co oznacza, że v = (−1, 0) i 1 ∈ L2h(D).

Jeżeli α1 > 0, to stosujemy Lemat 4.11:

|(zν)α|√
kD(zν)

⩽ ∥1∥De⟨x
ν ,α⟩ → 0, ν →∞.

Gdy α1 = 0, wtedy Lemat 4.4 gwarantuje istnienie β2 ∈ Z takiego, że β2 < α2 oraz
zβ22 ∈ L2h(D). Zatem

|(zν)α|√
kD(zν)

=
|zν2 |α2√
kD(zν)

⩽ ∥zβ22 ∥D|zν2 |α2−β2 → 0, ν →∞,

ponieważ zν2 → 0, gdy ν →∞.
Pozostaje nam jeszcze do rozpatrzenia przypadek, gdy D ∩ (V1 ∪ V2) = ∅.
Z Lematu 4.9 wnioskujemy, że v jest wektorem niewymiernym — takim, że Rv∩Q2 =

{0}. Lemat 4.12, zastosowany do stożka R+v i δ = ⟨α+1, v⟩, daje nam istnienie β ∈ Z2
takiego, że 0 < ⟨β, v⟩ < −⟨α + 1, v⟩. Z kolei, z Lematu 4.4 dostajemy zα+β ∈ L2h(D),
bo ⟨α+ β + 1, v⟩ < 0. Ponownie korzystamy z Lematu 4.11:

|(zν)α|√
kD(zν)

⩽ ∥zα+β∥D
∣∣(zν)−β∣∣ = ∥zα+β∥De−⟨xν ,β⟩ → 0 ν →∞.

□
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DODATEK

Definicje i rezultaty, zebrane poniżej, zostały zaczerpnięte z następujących pozycji:
[Jak–Jar 1998] (Funkcje holomorficzne, Funkcje plurisubharmoiniczne), [Ran 1995] i
[Lan 1972] (Teoria potencjału), [Kli 1991] (Zespolona funkcja Greena) oraz [Fed 1969].
Ze względu na wygodę oraz potrzeby niniejszej rozprawy, niektóre z nich zostały podane
w formie innej niż w oryginale.

Funkcje holomorficzne

Definicja D.1. Niech Ω ⊂ Cn będzie zbiorem otwartym. Funkcję f : Ω → C
nazywamy holomorficzną (f ∈ O(Ω)), jeśli dla dowolnego punktu a ∈ Ω istnieje r ∈
(0,dist (a, ∂Ω)) i liczby (aα)α∈Zn+ ⊂ C takie, że

f(z) =
∑
α∈Zn+

aα(z − a)α, z ∈ ∆(a, r)n.

Odwzorowanie f = (f1, . . . , fm) : Ω → Cm, (m > 1) nazywamy odwzorowaniem
holomorficznym (f ∈ O(Ω,Cm)), jeśli fj ∈ O(Ω), j = 1, . . . ,m.

Jeżeli Ω1 jest zbiorem otwartym w Cn oraz f : Ω → Ω1 jest bijektywnym od-
wzorowaniem holomorficznym, to f nazywamy biholomorfizmem lub odwzorowaniem
biholomorficznym, a o zbiorach Ω,Ω1 mówimy, że są biholomorficzne.

Twierdzenie D.2 (Zasada identyczności). Jeżeli D ⊂ Cn jest obszarem oraz
f, g ∈ O(D), to następujące warunki są równoważne:

(i) f ≡ g.
(ii) int {z ∈ D : f(z) = g(z)} ̸= ∅.

Twierdzenie D.3 (Wzór całkowy Cauchy’ego). Niech D1, . . . , Dn ⊂ C będzie
ograniczonymi obszarami, których brzeg jest skończoną sumą rozłącznych łuków Jor-
dana, zorientowanych dodatnio. Oznaczmy D := D1×· · ·×Dn. Jeżeli f ∈ O(D)∩C(D),
to zachodzi wzór

f(z) =
1

(2πi)n

∫
∂D1

· · ·
∫
∂Dn

f(ζ1, . . . , ζn)
(ζ1 − z1) . . . (ζn − zn)

dζ1 . . . dζn, z = (z1, . . . , zn) ∈ D.
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Definicja D.4. Dla zbioru otwartego Ω ⊂ Cn zdefiniujmy

L2h(Ω) := {f ∈ O(Ω) :
∫
Ω
|f(z)|2 dL2n(z) < +∞}.

Jest to przestrzeń Hilberta z iloczynem skalarnym

⟨f, g⟩Ω :=
∫
Ω
f(z)g(z) dL2n(z), f, g ∈ L2h(Ω),

i normą ∥f∥Ω := ⟨f, f⟩D.

Lemat D.5. Dla dowolnego zbioru zwartego K ⊂ Ω oraz r > 0, spełniających wa-
runek K + ∆(0, r)n ⊂ Ω, istnieje stała C > 0 taka, że

max
z∈K
|f(z)| ⩽ C∥f∥Ω.

Twierdzenie Riemanna D.6. Niech D ⊊ C będzie obszarem jednospójnym (któ-
rego brzeg jest spójny). Wtedy D jest biholomorficzny z kołem jednostkowym.

Twierdzenie Poincaré’go D.7. Dla n > 1 kula jednostkowa Bn nie jest biholo-
morficzna z polidyskiem ∆(0, 1)n.

Definicja D.8. Niech Ω ⊂ Cn będzie zbiorem otwartym. Mówimy, że Ω jest ob-
szarem holomorficzności, jeśli nie istnieją obszary Ω̃,Ω0 ⊂ Cn, takie, że Ω̃ ̸⊂ Ω,
∅ ̸= Ω0 ⊂ Ω ∩ Ω̃ i spełniające warunek

dla dowolnego f ∈ O(Ω) istnieje f̃ ∈ Ω̃ takie, że f̃ = f w Ω0.

Twierdzenie D.9. Wszystkie obszary na płaszczyźnie zespolonej są obszarami ho-
lomorficzności.

Definicja D.10. Zbiór A ⊂ Cn nazywamy:

(a) n–kołowym lub zbiorem Reinhardta, jeśli dla dowolnych a = (a1, . . . , an) ∈ A,
λ1, . . . , λn ∈ ∂∆(0, 1)

(λ1a1, . . . , λnan) ∈ A;

(b) zbalansowanym, jeśli dla dowolnych a ∈ A, λ ∈ ∆(0, 1)

λa ∈ A.

Definicja D.11. Dla zbioru Reinhardta A ⊂ Cn jego obrazem logarytmicznym
nazywamy zbiór

logA := {(x1, . . . , xn) ∈ Rn : (ex1 , . . . , exn) ∈ A}.
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Twierdzenie D.12. Niech D ⊂ Cn będzie obszarem Reinhardta. Jeżeli f ∈ O(D),
to istnieją liczby (aα)α∈Zn ⊂ C takie, że zachodzi równość

f(z) =
∑
α∈Zn

aαz
α, z ∈ D.

Ponadto, szereg
∑
α∈Zn |aαzα| jest zbieżny lokalnie jednostajnie na D.

Twierdzenie D.13. Niech D ⊂ Cn będzie obszarem Reinhardta. Następujące wa-
runki są równoważne:

(i) D jest obszarem holomorficzności.
(ii) logD jest wypukły oraz, dla dowolnego j = 1, . . . , n i λ ∈ ∆(0, 1),
jeśli D ∩ Vj ̸= ∅ i (z′, zj , z′′) ∈ D, to (z′, λzj , z′′) ∈ D,

gdzie Vj := {z ∈ Cn : zj = 0}, j = 1, . . . , n.

Funkcje plurisubharmoniczne

Definicja D.14. Niech Ω ⊂ R2 ≃ C będzie zbiorem otwartym. Funkcję h ∈
C2(Ω,R) nazywamy harmoniczną, jeśli

∂2h

∂x2
+
∂2h

∂y2
= 0 na Ω.

Funkcję u : Ω→ [−∞,+∞) nazywamy subharmoniczną (u ∈ SH (Ω)), jeśli spełnione
są następujące dwa warunki:

(a) u jest półciągła z góry.
(b) Dla dowolnego obszaru D ⊂⊂ Ω i dla dowolnej funkcji h harmonicznej na D i

ciągłej na D zachodzi

jeśli u ⩽ h na ∂D, to u ⩽ h na D.

Twierdzenie D.15. Niech Ω ⊂ C będzie zbiorem otwartym. Jeśli u ∈ SH (Ω), to
zachodzi wzór

u(z) ⩽ 1
2π

∫ 2π
0

u(z + reit) dt, z ∈ Ω, 0 < r < dist (z, ∂Ω).

Definicja D.16. Niech Ω ⊂ Cn będzie zbiorem otwartym. Funkcję u : Ω →
[−∞,+∞) nazywamy plurisubharmoniczną (u ∈ PSH (Ω)), jeśli zachodzą dwa warunki

(a) u jest półciągła z góry.
(b) Dla dowolnych a ∈ Ω, X ∈ Cn funkcja jednej zmiennej

{ζ ∈ C : a+ ζX ∈ Ω} ∋ λ 7→ u(a+ λX)

jest subharmoniczna.
Mówimy, że funkcja u ∈ C(Ω,R) jest ściśle plurisubharmoniczna, jeśli dla dowolnego

obszaru D ⊂⊂ Ω istnieje ε > 0 takie, że funkcja

D ∋ z 7→ u(z)− ε∥z∥2

jest plurisubharmoniczna.
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Twierdzenie D.17. Niech Ω ⊂ Cn będzie zbiorem otwartym.
(a) Jeśli f ∈ O(Ω), to log |f | ∈ PSH(Ω).
(b) Jeśli f ∈ O(Ω1,Ω), gdzie Ω1 jest zbiorem otwartym w Cm, to u ◦ f ∈ PSH (Ω1).
(c) Jeśli funkcja u ∈ PSH (Cn) jest ograniczona od góry, to jest stała.
(d) Jeśli D ⊂ Cn jest obszarem i funkcja u ∈ PSH (D) nie jest stała, to u nie osiąga
maksimum globalnego w D.

(e) Jeśli u ∈ C2(Ω,R), to u jest plurisubharmoniczna wtedy i tylko wtedy, gdy dla
wszystkich z ∈ Ω, X ∈ Cn

n∑
j,k=1

∂u2

∂zj∂zk
(z)XjXk ⩾ 0.

Definicja D.18. Niech Ω ⊂ Cn będzie zbiorem otwartym. Funkcję u : Ω →
[−∞,+∞) nazywamy wyczerpującą (dla Ω), jeśli

{z ∈ Ω : u(z) ⩽ t} ⊂⊂ Ω, dla dowolnego t < sup
Ω
u.

Zbiór Ω nazywamy pseudowypukłym, jeśli istnieje ciągła, wyczerpująca funkcja plu-
risubharmoniczna dla Ω.

Zbiór Ω nazywamy hiperwypukłym, jeśli istnieje ciągła i ujemna, wyczerpująca funk-
cja plurisubharmoniczna dla Ω.

Twierdzenie D.19. Zbiór otwarty Ω ⊂ Cn jest pseudowypukły wtedy i tylko wtedy,
gdy jest obszarem holomorficzności.

Teoria potencjału

Definicja D.20. Zbiór E ⊂ C nazywamy polarnym, jeśli istnieje funkcja u ∈
SH (C), u ̸≡ −∞ taka, że E ⊂ u−1(−∞).

Definicja D.21. Niech P(K) będzie zbiorem wszystkich probabilistycznych miar
borelowskich µ, których support zawarty jest w zbiorze zwartym K ⊂ C.

Zdefiniujmy potencjał logarytmiczny pµ miary µ ∈ P(K) w następujący sposób

pµ(z) :=
∫
K

log |z − w| dµ(w), z ∈ C.

Miarę ν ∈ P(K) nazywamy miarą równowagi zbioru K, jeśli

I(ν) = sup{I(µ) : µ ∈ P(K)},

gdzie

I(µ) :=
∫
K

pµ(z) dµ(z)

jest energią miary µ.
Pojemnością logarytmiczną zbioru E ⊂ C nazywamy liczbę

capE := esup{I(µ):µ∈P(K),K zwarty podzbiór E}.
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Twierdzenie D.22.
(a) Potencjał pµ jest funkcją subharmoniczną na C i harmoniczną w C \K.
(b) Jeżeli K jest niepolarnym zbiorem zwartym, to istnieje jedyna miara równowagi

µK .
(c) Zbiór borelowski E jest polarny wtedy i tylko wtedy, gdy capE = 0.

Twierdzenie D.23.
(a) Jeśli E1 ⊂ E2 ⊂ C, to capE1 ⩽ capE2.
(b) Jeśli (Bk)∞k=1 jest wstępującą rodziną borelowskich podzbiorów C, to

cap
( ∞∪
k=1

Bk
)

= lim
k→∞

capBk.

(c) Jeśli (Kk)∞k=1 jest zstępującą rodziną zwartych podzbiorów C, to

cap
( ∞∩
k=1

Kk
)

= lim
k→∞

capKk.

(d) Jeśli B =
∪N
k=1Bk, gdzie Bk są borelowskimi podzbiorami C oraz diamB ⩽ d

(d > 0, N = 1, 2, . . . ,∞), to

1
log
(
d
capB

) ⩽ N∑
k=1

1
log
(
d

capBk

) .
(e) Jeśli B =

∪N
k=1Bk, gdzie Bk są borelowskimi podzbiorami C oraz takimi, że

dist (Bk, Bl) ⩾ d > 0 (k, l = 1, . . . , N, k ̸= l, N = 1, 2, . . . ,∞), to

1
log+
(
d
capB

) ⩾ N∑
k=1

1
log+
(
d

capBk

) .
(f) Dla dowolnego zbioru zwartego K ⊂ C, mamy capK ⩽ diamK oraz capK =

cap (∂K). Ponadto cap ∆(z, r) = cap ∂∆(z, r) = r dla z ∈ C, r > 0.

Definicja D.24. Niech D ⊊ C będzie obszarem. Mówimy, że punkt z0 ∈ ∂D jest
punktem regularnym zbioru D (ze względu na problem Dirichleta), jeśli istnieje otoczenie
otwarte U punktu z0 i ujemna funkcja u ∈ SH (U ∩D) taka, że limD∋z→z0 u(z) = 0.

Obszar D nazywamy regularnym, jeżeli każdy jego punkt brzegowy jest regularny.

Twierdzenie D.25. Niech D ⊊ C będzie obszarem oraz z0 ∈ ∂D. Jeśli składowa
spójna brzegu D zawierająca punkt z0 jest różna od {z0}, to z0 jest punktem regularnym
zbioru D.

Twierdzenie D.26 (Kryterium Wienera). Niech D ⊊ C będzie obszarem oraz
z0 ∈ ∂D. Zdefiniujmy zbiory

Fk := {z ∈ C \D : ρk+1 ⩽ |z − z0| < ρk}, k ⩾ 1,

gdzie ρk, k ⩾ 1 są liczbami dodatnimi takimi, że 1 < a < ρk
ρk+1

< b, k ⩾ 1, dla pewnych
liczb a, b > 1.
Wtedy punkt z0 jest regularny ze względu na problem Dirichleta dla D wtedy i tylko

wtedy, gdy
∞∑
k=1

log ρk
log capFk

= +∞.
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Twierdzenie D.27 (Twierdzenie Frostmana). Niech µ będzie miarą równowagi
niepolarnego zbioru zwartego K.
Wtedy pµ ⩾ log capK na C oraz pµ = log capK on K \ F , gdzie F ⊂ ∂K jest

zbiorem polarnym typu Fσ.
Ponadto, jeżeli punkt z ∈ ∂K jest regularny ze względu na problem Dirichleta dla

nieograniczonej składowej spójnej C \K, to pµ(z) = log capK.

Definicja D.28. Niech D ⊊ C będzie obszarem. (Klasyczną) funkcją Greena ob-
szaru D z biegunem w punkcie w ∈ D nazywamy funkcję gD(w, ·) : D → [−∞,+∞),
spełniającą następujące warunki:

(a) gD(w, ·) jest subharmoniczna na D i harmoniczna na D \ {w};
(b) gD(w, ·)− log | · −w| jest ograniczona na D;
(c) gD(w, z)→ 0, gdy z → z0 ∈ ∂D \ F , gdzie F jest polarnym podzbiorem ∂D.

Twierdzenie D.29. Niech D ⊊ C będzie obszarem takim, że zbiór C \D jest nie-
polarny, oraz niech w ∈ ∂D.

(a) Istnieje jedyna funkcja Greena gD(w, ·) dla D z biegunem w w.
(b) gD(w, z) = gD(z, w) dla z, w ∈ D.
(c) limz→z0 gD(w, z) = 0 wtedy i tylko wtedy, gdy z0 ∈ ∂D jest punktem regularnym
zbioru D.

Zespolona funkcja Greena

Definicja D.30. Niech D będzie obszarem w Cn. Funkcją Greena obszaru D z
biegunem w punkcie w ∈ D nazywamy

gD(w, z) := sup{u(z)},

gdzie supremum bierzemy po wszystkich ujemnych funkcjach u ∈ PSH (D) takich, że
u− log(· − w) jest ograniczona od góry.

Twierdzenie D.31. Niech D będzie obszarem w Cn oraz niech w ∈ D.
(a) Funkcja gD(w, ·) jest plurisubharmoniczna na D.
(b) Dla dowolnego obszaru G ⊂⊂ D i dla dowolnej funkcji u ∈ PSH(G) zachodzi

jeśli u ⩽ gD(w, ·) na ∂G, to u ⩽ gD(w, ·) na G.

(c) Jeżeli D jest ograniczonym obszarem hiperwypukłym, to gD jest ciągła na D×D.
W szczególności, limz→∂D gD(w, z) = 0.

(d) Jeżeli D jest obszarem w C, którego dopełnienie nie jest zbiorem polarnym, to
gD(w, ·) = gD(w, ·).
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Inne

Twierdzenie D.32 (Nierówność Schwarza). Niech X będzie przestrzenią wek-
torową nad C (lub R) z iloczynem skalarnym ⟨·, ·⟩X . Wtedy dla dowolnych x, y ∈ X
zachodzi

|⟨x, y⟩X |2 ⩽ |⟨x, x⟩X ||⟨y, y⟩X |.

Ponadto, równość zachodzi wtedy i tylko wtedy, gdy x i y są liniowo zależne.

Twierdzenie D.33 (Twierdzenie Riesza). Niech H będzie przestrzenią Hilberta
z iloczynem skalarnym ⟨·, ·⟩H . Jeżeli f : H → C jest ciągłym funkcjonałem liniowym,
to istnieje y ∈ H takie, że

f(x) = ⟨x, y⟩H , x ∈ H.

Definicja D.34. Niech Ω ⊂ Rn będzie zbiorem otwartym. Funkcję f : Ω → R
nazywamy funkcją lipschitzowską, jeżeli istnieje stała L > 0 taka, że dla dowolnych
x, y ∈ Ω

|f(x)− f(y)| ⩽ L∥x− y∥.

Twierdzenie D.35 (Twierdzenie Rademachera). Jeżeli f : Ω → R jest funk-
cją lipschitzowską na zbiorze otwartym Ω ⊂ Rn, to f posiada pochodną w prawie wszyst-
kich (względem miary Ln) punktach zbioru Ω.

Twierdzenie D.36 (Wzór Greena). Niech D ⊂ R2 będzie ograniczonym obsza-
rem, którego brzeg jest skończoną sumą rozłącznych łuków Jordana, zorientowanych
dodatnio. Jeżeli funkcje P,Q : Ω→ R są lipschitzowskie na pewnym otoczeniu Ω zbioru
D, to zachodzi wzór∫

∂D

P (x, y) dx+Q(x, y) dy =
∫
D

(
∂Q

∂x
(x, y)− ∂P

∂y
(x, y)

)
dL2(x, y).
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LISTA OZNACZEŃ

N — zbiór liczb naturalnych: 1, 2, 3, . . . ;
Z — zbiór liczb całkowitych;
Q — zbiór liczb wymiernych;
R — zbiór liczb rzeczywistych;
C — zbiór liczb zespolonych;
Re z — część rzeczywista liczby z ∈ C;
Imz — część urojona liczby z ∈ C;
A+ := A ∩ [0,+∞);
A− := A ∩ (−∞, 0];
A∗ := A \ {0};
A+B := {a+ b : a ∈ A, b ∈ B};
An := A× ...×A︸ ︷︷ ︸

n

;

A — domknięcie zbioru A;
∆(w, r) := {z ∈ C : |z − w| < r};
Bn — kula jednostkowa w Cn;
⟨·, ·⟩ — zespolony iloczyn skalarny w Cn;
∥ · ∥ — norma euklidesowa w Cn;
dist (z,A) := supa∈A ∥z − a∥;
Ln — n–wymiarowa miara Lebesgue’a;
C(D,G) — zbiór odwzorowań ciągłych f : D → G;
Ck(D,G) — zbiór odwzorowań klasy Ck f : D → G;
O(D,G) — zbiór odwzorowań holomorficznych f : D → G;
C(D) := C(D,C); O(D) := O(D,C);
SH (D) — zbiór funkcji subharmonicznych na D;
PSH (D) — zbiór funkcji plurisubharmonicznych na D;
L2h(D) — przestrzeń funkcji holomorficznych na D, całkowalnych z kwadratem;
⟨·, ·⟩D — iloczyn skalarny w przestrzeni L2h(D);
∥ · ∥D — norma w przestrzeni L2h(D);
KD — funkcja jądrowa Bergmana obszaru D;
kD — jądro Bergmana obszaru D;
βD — pseudometryka Bergmana obszaru D;
bD — pseudoodległość Bergmana obszaru D,
LβD (α) — długość krzywej α względem pseudometryki βD;
cD — pseudoodległość Carathéodory’ego obszaru D;
gD — zespolona funkcja Greena obszaru D;
gD — klasyczna funkcja Greena obszaru D;
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capE — pojemność logarytmiczna zbioru E;
µK — miara równowagi zbioru K;
pµ — potencjał logarytmiczny związany z miarą µ;

γD(z) :=
∫ 1
4
0

dδ
δ3(− log cap (∆(z,δ)\D)) ;

γ̂D(z) :=
∫ 1
4
0

dδ

δ2
√
− log cap (∆(z,δ)\D)

;

Ak(z) := {w ∈ C : 1
2k+1 ⩽ |w − z| ⩽

1
2k };

zα := zα11 . . . zαnn , dla α ∈ Zn;
ΦA(z) := (zA

1
, . . . , zA

n

), dla A = [Ajk]j,k=1,...,n ∈ Zn×n;
Vj := {z ∈ Cn : zj = 0};
E = E(D) := {zα ∈ L2h(D) : α ∈ Zn};
Span E(D) — najmniejsza liniowa podprzestrzeń L2h(D), zawierająca zbiór E(D);
A = A(D) := {α ∈ Zn : zα ∈ L2h(D)};
J(D) := {j ∈ {1, . . . , n} : Vj ∩D ̸= ∅};
logD — obraz logarytmiczny zbioru Reinhardta D;
C(D) — maksymalny stożek zawarty w logD, dla zbioru Reinhardta D;
C̃(D) := {v ∈ Rn : istnieje limt→+∞ exp(a+ tv) ∈ D};
C′(D) := C(D) \ C̃(D).
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